Skip to main content
Log in

The calculated solubility of platinum and gold in oxygen-saturated fluids and the genesis of platinum-palladium and gold mineralization in the unconformity-related uranium deposits

  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Thermodynamic calculations on the solubility of platinum and gold indicate that saline (1 m NaCl), fluids saturated with atmospheric oxygen can transport geologically realistic concentrations of platinum-group-elements (PGE), gold, and uranium as chloro-complexes. A number of calculations involving fluid-rock interaction suggest that the oxygen-saturated fluids flowing through rocks containing quartz, muscovite, kaolinite, magnetite and hematite, initially oxidize any magnetite to hematite, allowing subsequent batches of ore fluids to retain their high oxidation state. During their migration through the aquifer, the oxidizing fluids would move the oxidation-reduction interface deeper into the aquifer, leaching and redepositing platinum and gold. The redissolution of earlier precipitated platinum and gold depends on the fluid/ rock ratio and the associated increase in the oxidation state. Therefore, lowering of fluid/rock ratios and/or mixing of the oxidized fluids with a large amount of reduced fluid will precipitate uranium, PGE, and gold. It is suggested that this model can explain the genesis of gold and PGE mineralization in the unconformity-related uranium deposits of the Alligator Rivers Uranium Field in the Northern Territory, Australia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayres, D.E., Eadington, P.J. (1975) Uranium mineralization in the South Alligator River valley. Mineral. Deposita. 10:27–41

    Google Scholar 

  • Belevantsev, V.I., Kolonin, G.B., Peschevitskiy, B.I. (1982) Use of stepwise ligand replacement in estimating the stability constants of mixed complexes in geochemically important systems. Geochem. Intern. 19:169–179

    Google Scholar 

  • Bowles, J.F.W. (1986) The development of platinum-group minerals in laterites. Econ. Geol. 81:1278–1285

    Google Scholar 

  • Brookins, D.G. (1987) Platinoid element Eh-pH diagram (25°C, 1bar) in the system M-O-H-S with geochemical applications. Chem. Geol. 64:17–24

    Google Scholar 

  • Cobble, J.W., Murray, Jr., R.C., Turner, P.J, Chen, K. (1982) High temperature thermodynamic data for species in aqueous solutions. Nat. Tech. Inform. Service Rept. EPRI-NP-2400: 1–197

  • Criss, C.M., Cobble, J.W. (1964) The thermodynamic properties of high temperature aqueous solutions. J. Am. Chem. Soc. 86:5385–5393

    Google Scholar 

  • Dahlkamp, F.J. (1978) Geological appraisal of the Key Lake U-Ni deposits, Northern Saskatchewan. Econ. Geol. 73:1430–1449

    Google Scholar 

  • DeVoto, R.H. (1978) Uranium in phanerozoic sandstone and volcanic rocks. In: Kimberley, M.M. (ed.) Uranium deposits, their mineralogy and origin: Short course in Uranium deposits: their mineralogy and origin. MAC short course handbook 3:293–305

  • Faramazyan, A.S., Kalinin, S.K., Terekhovich, S.L. (1975) Geochemistry of platinum group elements in the ores of copper-molybdenum deposits of Armenia. Dokl. Akad. Nauk SSSR. 190:220–221

    Google Scholar 

  • Fuchs, A.W., Rose, A.W. (1974) The geochemical behaviour of platinum and palladium in the weathering cycle in the Stillwater Complex, Montana. Econ. Geol. 69:332–346

    Google Scholar 

  • Goldberg, R.N., Hepler, L.G. (1968) Thermochemistry and oxidation potential of the platinum group metals and their compounds: Chem. Rev. 68:229–252

    Google Scholar 

  • Hakli, T.A., Hanninen, E., Vuorelainen, Y, Papunen, H. (1976) Platinum group minerals in the Hitura nickel deposit, Finland: Econ. Geol. 71:1206–1213

    Google Scholar 

  • Hegge, M.R, Mosher, D.V, Eupene, G.S., Anthony, P.J. (1980) Geological setting of the East Alligator uranium deposits and prospects: Proceedings of the International Uranium symposium, IAEA. 259–272

  • Heinrich, C.A. (1987) The CSIRO-SGTE-THERMODATA package for thermodynamic computations at BMR. Records BMR. Geol. Geophys. 1987/42:44

    Google Scholar 

  • Helgeson, H.C. (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am. J. Sci. 267:729–804

    Google Scholar 

  • Hoeve, J, Quirt, D. (1987) A stationary redox front as a critical factor in the formation of high-grade, unconformity-type uranium ores in the Athabasca basin, Saskatchewan, Canada. Bull. Mineral. 110:157–171

    Google Scholar 

  • Hoeve, J, Sibbald, T.I.I. (1978a) On the genesis of Rabbit Lake and other unconformity-type uranium deposits in Northern Sakatchewan, Canada. Econ. Geol. 73:1450–1473

    Google Scholar 

  • Hoeve, J., Sibbald, T.I.I. (1978b) Mineralogy and geological setting of the unconformity-type uranium deposits in Northern Saskatchewan. In: Kimberley, M. (ed.) Uranium deposits, their mineralogy and origin. Short course in Uranium deposits: their mineralogy and origin. MAC short course handbook 3:457–474

  • Jaireth, S. (1988) Hydrothermal transport of platinum and gold in the unconformity-related uranium deposits: A preliminary thermodynamic investigation. Records BMR, Geol. Geophys. 1988/9:27

    Google Scholar 

  • Kucha, H. (1982) Platinum-group metals in the Zechstein copper deposits, Poland. Econ. Geol. 77:1587–1591

    Google Scholar 

  • Lemire, R.J., Treamaine, P.R. (1980) Uranium and plutonium equilibria in aqueous solutions to 200°C. J Chem. Eng. Data. 25:361–370

    Google Scholar 

  • Maas, R. (1989) Nd-Sr isotope constraints on the age and origin of unconformity-type uranium deposits in the Alligator Rivers Uranium Field, Northern Territory, Australia. Econ Geol. 84:64–90

    Google Scholar 

  • Mathez, E.A. (1989) Interactions involving fluids in the Stillwater and Bushveld complex: observations from the rocks. In: Whitney, J.A., Naldrett, A.J. (eds.) Ore deposits associated with magmas. Rev. Econ. Geol. 4:167–179

  • Mihalik, P., Jacobson, J.B.E., Hiemstra, S.A. (1974) Platinum-group minerals from a hydrothermal environment: Econ. Geol. 69:257–262

    Google Scholar 

  • Mountain, B.W., Wood, S.A. (1988) Chemical controls on the solubility, transport, and deposition of platinum and palladium in hydrothermal solutions: A thermodynamic approach. Econ. Geol. 69:492–510

    Google Scholar 

  • Needham, R.S. (1987) A review of mineralization in the South Alligator conservation zone. Records, BMR, Geol. Geophys. 1987/52:13

    Google Scholar 

  • Ottemann, J., Augustithis, S.S. (1967) Geochemistry and origin of “platinum-nuggets” in lateritic covers from ultrabasic rocks and birbirites of W. Ethiopia. Mineral. Deposita. 1:269–277

    Google Scholar 

  • Pagel, M., Poty, B., Sheppard, S.M.F. (1980) Contribution to some Saskatchewan uranium deposits mainly from fluid inclusion data: Proceedings of International Uranium symposium on the Pine Creek geosyncline. IAEA. 639–654

  • Peyrel, W. (1982) The influence of the Driekop dunite pipe on the platinum-group mineralogy of the UG-2 chromitite in its vicinity. Econ. Geol. 77:1432–1438

    Google Scholar 

  • Piispanen, M., Tarkian, M. (1984) Cu-Ni-PGEs mineralization at Rometolvas, Koilismaa layered igneous complex, Finland. Mineral. Deposita 19:105–111

    Google Scholar 

  • Ramaekers, B., Dunn, C.E. (1977) Geology and geochemistry of the eastern margin of the Athabasca Basin: In: Dunn, C.E. (Ed.) Uranium in Saskatchewan. Sask. Geol. Soc. Spec. Publ. 3:297–322

  • Reed, M.H. (1982) Calculation of multicomponent chemical equilibria and reaction processes in system involving minerals, gases and an aqueous phase. Geochim. Cosmochim. Acta 46:513–528

    Google Scholar 

  • Renders, P.J., Seward, T.M. (1989) The stability of hydrosulphido-and sulphido-complexes of Au(I) at 25°C. Geochim. Cosmochim. Acta. 53:245–254

    Google Scholar 

  • Seward, T.M. (1973) Thiocomlexes of gold and the transport of gold in hydrothermal solutions up to 350°C. Geochim. Cosmochim. Acta. 40:379–399

    Google Scholar 

  • Seward, T.M. (1984) The transport and deposition of gold in hydrothermal system. In: Foster, R.P. (ed.) Gold' 82: The geology and geochemistry and genesis of gold deposits. Geol. Soc. Zimbabwe Spec. Publ. 1:165–181

  • Shenberger, D.M., Barnes, H.L. (1989) Solubility of gold in aqueous sulphide solutions from 150 to 350°C. Geochim. Cosmochim. Acta. 53:269–278

    Google Scholar 

  • Tarkian, M., Stumpfl, E.F. (1975) Platinum mineralogy of the Dreikop mine, South Africa. Mineral. Deposia 10:71–85

    Google Scholar 

  • Trocki, L.K., Curtis, D., Gancarz, A.J., Banar, J.C. (1984) Ages of major uranium mineralization and lead loss in the Key Lake uranium deposit, Northern Saskatchewan, Canada. Econ. Geol. 79:1378–1386

    Google Scholar 

  • Turnbull, A., Wadsley, M.W. (1986) The CSIRO-SGTE THERMO-CHEMISTRY system. Introduction: Databank index; FILER; ESTIMA; REACT; CHEMIX; VAPOUR; ENERGY; 9 vols. CSIRO Div. Mineral Chemistry. Port Melbourne

  • Wagman, D.D., Evans. W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., Nutall, R.L. (1982) The NBS tables of chemical thermodynamic properties. J. Phys. Chem. Ref. Data 11:2–392

    Google Scholar 

  • Westland, A.D. (1981) Inorganic chemistry of the PGEs. Canadian I.M.M., special vol. 23:7–18

    Google Scholar 

  • Wilde, A.R., Bloom, M.S., Wall, V.J. (1989a) Transport and deposition of gold, uranium, and PGEs in unconformity-related uranium deposits. In: Keays, R.H., Ramsay, W.R.H., Groves, D.I. (eds.) The geology of gold deposits: the perspective in 1988. Econ. Geol. Monogr. 6:637–650

  • Wilde, A.R., Mernagh, T.P., Bloom, M.S., Hoffman, C.F. (1989b) Fluid inclusion evidence on the origin of some Australian unconformity-related uranium deposits. Econ. Geol. 84:1627–1642

    Google Scholar 

  • Wood, S.A., Mucci, A. (1988) The solubility of platinum as bisulphide and hydroxide complexes at 25°C (abs.). Goldschmidt Conf. Baltimore. Maryland. May 11–13. Program with abstracts: 83

  • Wood, S.A., Mountain, B.W., Fenlon, B.J. (1989) Thermodynamic constraints on the solubility of platinum and palladium in hydrothermal solutions: reassessment of hydroxide, bisulphide and ammonia complexing. Econ. Geol. 84:2020–2028

    Google Scholar 

  • Wray, E.M., Ayres, D.E., Ibrahim, H. (1985) Geology of the Mid-west uranium deposit. Northern Saskatchewan. Canadian I.M.M., special vol. 32:54–66

    Google Scholar 

  • Yang, Min-chin., Ni Chi-tsung., Tai Feng-fu (1974) Geochemistry of precious metals in skarns and hydrothermal copper deposits from a certain district, N. China: Geochimica. 9:167–180 (in Chinese with English summary)

    Google Scholar 

  • Ypma, P.J.M., Fuzikawa, K. (1980) Fluid inclusion and oxygen isotope studies of the Nabarlek and Jabiluka uranium deposits, Northern Territory, Australia: Proceedings of International uranium symposium on the Pine Creek geosyncline. IAEA: 375–395

  • Yushko-Zakharova, O. Ye., Ivanov, V.V., Razina, L.S., Chernyayev, L.A. (1967) Geochemistry of platinum metals: Geochem. Intern. 4:1106–1107

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaireth, S. The calculated solubility of platinum and gold in oxygen-saturated fluids and the genesis of platinum-palladium and gold mineralization in the unconformity-related uranium deposits. Mineral. Deposita 27, 42–54 (1992). https://doi.org/10.1007/BF00196079

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00196079

Keywords

Navigation