, Volume 9, Issue 4, pp 181–189 | Cite as

Increase in tree-ring width in subalpine Pinus cembra from the central Alps that may be CO2-related

  • Kurt Nicolussi
  • Sigmar Bortenschlager
  • Christian Körner


It has been suggested many times that elevated atmospheric CO2 levels should stimulate radial increment of stem growth. However, interpretation of dendrochronologies with respect to a CO2 signal is a difficult task, since a multitude of environmental and tree factors influence the growth of stems. Here we provide a data set from subalpine stone pine which covers the period from 1750 to 1988, and from which growth rings of the 80- to 90-year age class were analysed. The most common climatological effects are taken into consideration. We found a steady and significant increase of mean ring width for the considered age class from approximately 1 mm per year in the middle of the last century to about 1.4 mm per year at present. Selected periods of equal mean summer temperatures in the last century and in more recent decades still yield a mean stimulation of about 25% for which atmospheric CO2 enrichment appears to be the most plausible explanation. The recent dramatic increase of atmospheric N-deposition could confound this interpretation, but chronologies of the last 2 decades during which wet and dry deposition of N-compounds showed the most dramatic increase exhibit no deviation from the long term trend. In contrast to the so far conflicting evidence of tree-ring responses to atmospheric changes the clear signal obtained here may be explained as follows: (1) stone pine produces little late season wood and moisture is never a limiting factor (particularly not in the early season); (2) comparatively good climatic records permitted the selection of thermally comparable periods; (3) trees grew under little spatial competition, (4) cores were collected well below the upper altitudinal range-limit of stone pine, leaving enough physiological leeway under episodic climatic stress, but (5) trees grew at altitudes high enough so that the reduction of the partial pressure of CO2 could be expected to cause CO2 to become relatively more limiting than at low elevations.

Key words

Alps Altitude Carbon dioxide Climate change Dendrochronology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Austaller H (1988) Die Temperaturreihe von Kremsmünster. Ph D thesis, University of ViennaGoogle Scholar
  2. Becker M (1991) Incidence des conditions climatiques, édaphiques et sylvicoles sur la croissance et la santé des forêts. In: Les recherches en France sur le dépérissement des forêts. Programme DEFORPA, 2ème rapport, ENGREF, Nancy, pp 25–41Google Scholar
  3. Beerling DJ, Chaloner WG, Huntley B, Pearson JA, Tooley MJ, Woodward FI (1992) Variations in the stomatal density of Salix herbacea L. under the changing atmospheric CO2 concentrations of late- and post-glacial time. Phil Trans R Soc London B 336: 215–224Google Scholar
  4. Bider M, Schüepp M, vonRudioff H (1959) Die Reduktion der 200-jährigen Basler Temperaturreihe. Arch Meteorol, Geophys Bioklimatol Ser B 9: 360–412Google Scholar
  5. Briffa KR, Bartholin TS, Eckstein D, Jones PD, Karlen W, Schweingruber FH, Zetterberg P (1990) A 1,400-year tree-ring record of summer temperatures in Fennoscandia. Nature 346: 434–439CrossRefGoogle Scholar
  6. Bräker OU (1981) Der Alterstrend bei Jahrringdichten und Jahrringbreiten von Nadelhölzern und sein Ausgleich. Mitt Forstl BundesVersuchsanst Wien 142: 75–102Google Scholar
  7. Cook E, Kairiukstis LA (1990) Methods of dendrochronology, applications in the environmental sciences. Kluiver, DordrechtGoogle Scholar
  8. Deutscher Wetterdienst (annually since 1879) Dtsch Meteorol Jahrb, Offenbach/MainGoogle Scholar
  9. Deutscher Wetterdienst (1981) 200 Jahre meteorologische Beobachtungen auf dem Hohenpeißenberg 1781–1980. Ber Dtsch Wetterd 155, Offenbach/MainGoogle Scholar
  10. Gale F (1986) Carbon dioxide enhancement of tree growth at high elevations. Science 231: 850–860PubMedGoogle Scholar
  11. Grabherr G (1981) Dendrochronologische und dendroklimatologische Untersuchungen an Hölzern Westtirols (Österreich). Ber Nat-med Verein Innsbruck 68: 57–78Google Scholar
  12. Graumlich LJ (1991) Subalpine tree growth, climate, and increasing CO2: an assessment of recent growth trends. Ecology 72: 1–11Google Scholar
  13. Jarvis PG (1989) Atmospheric carbon dioxide and forests. Phil Trans R Soc London B 324: 369–392Google Scholar
  14. Jones PD, Wigley TML, Farmer G (1991) Marine and land temperature data sets: a comparison and a look at recent trends. In: Schlesinger ME (ed) Greenhouse-gas-induced climatic change: a critical appraisal of simulations and observations. Elsevier, Amsterdam, pp 153–172Google Scholar
  15. Kienast F, Luxmoore RJ (1988) Tree-ring analysis and conifer growth responses to increased atmospheric CO2 levels. Oecologia 76: 487–495Google Scholar
  16. Kienast F, Schweingruber FH, Bräker OU, Schär E (1987) Tree-ring studies on conifers along ecological gradients and the potential of single-year analyses. Can J For Res 17: 683–696Google Scholar
  17. Körner Ch (1988) Does global increase of CO2 alter stomatal density? Flora 181: 253–257Google Scholar
  18. Körner Ch (1989) The nutritional status of plants from high altitudes. A worldwide comparison. Oecologia 81: 379–391Google Scholar
  19. Körner Ch (1994) Biomass fractionation in plants — a reconsideration of definitions based on plant functions. In: Roy J, Gamier E (eds) A whole plant perspective on carbon-nitrogen interactions. SPB Academic, The Hague, pp 213–225Google Scholar
  20. Körner Ch, Diemer M (1987) In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Funct Ecol 1: 179–194Google Scholar
  21. Körner Ch, Larcher W (1988) Plant life in cold climates. In: Long SF, Woodward FI (eds) Plants and temperature. Symp Soc Exp Biol 42: 25–57. The Company of Biologists, CambridgeGoogle Scholar
  22. Körner Ch, Scheel JA, Bauer H (1979) Maximum leaf diffusive conductance in vascular plants. Photosynthetica 13: 45–82Google Scholar
  23. Körner Ch, Farquhar GD, Roksandic Z (1988) A global survey of carbon isotope discrimination in plants from high altitude. Oecologia 74: 623–632Google Scholar
  24. Körner Ch, Farquhar GD, Wong SC (1991) Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia 88: 30–40Google Scholar
  25. Körner Ch, Schilcher B, Pelaez-Riedl S (1993) Vegetation und Treibhausproblematik: Eine Beurteilung der Situation in Österreich unter besonderer Berücksichtigung der Kohlenstoff-Bilanz. In: Bestandsaufnahme anthropogener Klimaänderungen: Mögliche Auswirkungen auf Österreich — mögliche Massnahmen in Österreich. Österr. Akademie d. Wissenschaften, Wien, 6.1–6.46Google Scholar
  26. LaMarche VC, Graybill DA, Fritts HC, Rose MR (1984) Increasing atmospheric carbon dioxide: tree ring evidence for growth enhancement in natural vegetation. Science 225: 1019–1021Google Scholar
  27. Neftel A, Moor E, Oeschger H, Stauffer B (1985) Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature 315: 45–47Google Scholar
  28. Nicolussi K (1990) Die Beziehung zwischen dem Jahrringwachstum von Zirben an der Waldgrenze und dem Massenhaushalt des Hintereisferners. Ph D thesis, University of InnsbruckGoogle Scholar
  29. Parkhurst DF (1978) The adaptive significance of stomatal occurrence on one or both surfaces of leaves. J Ecol 66: 367–383Google Scholar
  30. Patzelt G, Aellen M (1990) Gletscher. In: Schnee, Eis und Wasser der Alpen in einer wärmeren Atmosphäre. Mitt Versuchsanst Wasserbau Hydrol Glaziol ETH Zürich 108: 49–96Google Scholar
  31. Phillips OL, Gentry AH (1994) Increasing turnovers through time in tropical forests. Science 263: 954–958Google Scholar
  32. Psenner R, Nickus U (1986) Snow chemistry of a glacier in the Central Eastern Alps (Hintereisferner, Tyrol, Austria). Z Gletscherkunde Glazialgeol 22: 1–18Google Scholar
  33. Schüepp M, Gensler G (1986) Witterungsänderungen in der Schweiz im 19. und 20. Jahrhundert — Ursachen und Folgen. Geogr Helv 41: 17–26Google Scholar
  34. Schweingruber F (1992) Baum und Holz in der Dendrochronologie. Eidgenöss Forschungsanst Wald Schnee Landschaft, BirmensdorfGoogle Scholar
  35. Schweizerische Meteorologische Anstalt (annually since 1864) Ann Schweiz Meteorol Zentralanst, ZürichGoogle Scholar
  36. Solomon AM, West DC (1985) Potential responses of forests to CO2-induced climate change. In: White MR (ed) Characterization of information requirements for studies of CO2 effects: water resources, agriculture, fisheries, forests and human health. US Dept of Energy, CO2 Res Div, Washington, DOE/ER-0236, pp 145–169Google Scholar
  37. Telewski FW, Strain BR (1987) Densitometric and ring width analysis of 3-year-old Pinus taeda L. and Liquidambar styraciflua L. grown under three levels of CO2 and two water regimes. In: Jacoby GC jr, Hornbeck JW (eds) Proc Int Symp on ecological aspects of tree ring analysis. DOE Conf 86–08144, Nat Tech Inf Ser, Springfield, pp 726–732Google Scholar
  38. Tranquillini W (1979) Physiological ecology of the Alpine timberline. Tree existence at high altitudes with special references to the European Alps. Billings WD, Golley F, Lange OL, Olson JS (eds) Ecological studies, vol 31. Springer, Berlin Heidelberg New YorkGoogle Scholar
  39. Vitousek PM (1991) Can planted forests counteract increasing atmospheric carbon dioxide? J Environ Qual 20: 348–354Google Scholar
  40. Woodward FI (1987) Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature 327: 617–618Google Scholar
  41. Woodward FI, Thompson GB, McKee IF (1991) The effect of elevated concentrations of carbon dioxide on individual plants, populations, communities and ecosystems. Ann Bot 67: 23–38Google Scholar
  42. Zentralanstalt für Meteorologie und Geodynamik (annually since 1848) Jahrb Zentralanst für Meteorol und Geodyn, WienGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Kurt Nicolussi
    • 1
  • Sigmar Bortenschlager
    • 1
  • Christian Körner
    • 1
  1. 1.Institut für BotanikUniversität InnsbruckInnsbruckAustria

Personalised recommendations