Skip to main content

Scale-associated glycoproteins of Scherffelia dubia (Chlorophyta) form high-molecular-weight complexes between the scale layers and the flagellar membrane

Abstract

Flagellar scales were isolated from the flagellate green alga Scherffelia dubia. The flagellar scales consist mainly of acidic polysaccharides (70%) and glycoproteins (10%), and monosaccharide analyses show that the scales contain high amounts of unusual 2-keto-sugar acids. Approximately, 72 mol% of total carbohydrate is 3-deoxy-manno-2-octulosonic acid, 3-deoxy-5-O-methylmanno-2-octulosonic acid and 3-deoxy-lyxo-2-heptulosaric acid. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed the presence of at least 18 different scale-associated proteins (SAPs), ranging in apparent molecular mass from 77 kDa to over 300 kDa. Lectin blot analyses performed in combination with glycosidase treatment, showed that SAPs contained N-glycans of the highmannose type and the hybrid type, as well as a complex type that was not immunologically related to higher-plant complex glycans. Most of the SAPs were present in two or possibly three high-molecular-weight complexes. In these complexes, individual polypeptides are cross-linked by disulfide bridges. A polyclonal antibody was raised against a SAP of 126 kDa (SAP 126), a glycoprotein present in a high-molecular-weight complex. The SAP126 antibody was used to localize the protein between scale layer and flagellar membrane. We suggest that these high-molecular-weight complexes link scales to the flagellar membrane.

This is a preview of subscription content, access via your institution.

Abbreviations

AAA:

Aleuria aurantia agglutinin

DSA:

Datura stramonium agglutinin

DTT:

dithiothreitol

GNA:

Galanthus nivalis agglutinin

RCA:

Ricinus communis agglutinin

SAP:

Scale-associated protein

TBS:

Tris-buffered saline

References

  • Altmann F, Schweizer S, Weber C (1995) Kinetic comparison of peptide: N-Glycosidase F and A reveals several differences in substrate specificity. Glycoconj J 12: 84–93

    Google Scholar 

  • Becker D, Melkonian M (1992) N-linked glycoproteins associated with flagellar scales in a flagellate green alga: characterization of interactions. Eur J Cell Biol 57: 109–116

    Google Scholar 

  • Becker B, Hård K, Melkonian M, Kamerling JP, Vliegenthart JFG (1989) Identification of 3-deoxy-manno-2-octulosonic acid (Kdo), 3-deoxy-5-O-methyl-manno-2-octulosonic acid and 3-deoxy-lyxo-2-heptulosaric acid in the cell wall (theca) of the green alga Tetraselmis striata (Butcher). Eur J Biochem 182: 153–160

    Google Scholar 

  • Becker D, Becker B, Satir P, Melkonian M (1990) Isolation, purification, and characterization of flagellar scales from the green flagellate Tetraselmis striata (Prasinophyceae). Protoplasma 156: 103–112

    Google Scholar 

  • Becker B, Becker D, Kamerling JP, Melkonian M (1991) 2-Ketosugar acids in green flagellates: a chemical marker for prasinophycean scales. J Phycol 27: 498–504

    Google Scholar 

  • Becker B, Salzburg M, Melkonian M (1993) Blot analysis of glycoconjugates using digoxigenin-labeled lectins: an optimized procedure. BioTechniques 15: 232–235

    Google Scholar 

  • Becker B, Marin B, Melkonian M (1994) Structure, composition, and biogenesis of prasinophyte cell coverings. Protoplasma 181: 233–244

    Google Scholar 

  • Becker B, Bölinger B, Melkonian M (1995a) Anterograde transport of algal scales through the Golgi complex is not mediated by vesicles. Trends Cell Biol 5: 305–307

    Google Scholar 

  • Becker B, Dreschers S, Melkonian M (1995b) Lectin-binding of flagellar scale-associated glycoproteins in different strains of Tetraselmis (Chlorophyta). Eur J Phycol 30: 307–312

    Google Scholar 

  • Becker B, Lommerse JPM, Melkonian M, Kamerling JP, Vliegenthart JFG (1995c) The structure of an acidic trisaccharide component from a cell wall polysaccharide preparation of the green alga Tetraselmis striata Butcher. Carbohydr Res 267: 313–321

    Google Scholar 

  • Bouck GB, Rogalski AA, Valaitis A (1978) Surface organization and composition of Euglena. II. Flagellar mastigonemes. J Cell Biol 77: 805–826

    Google Scholar 

  • Debray H, Montreuil J (1989) Aleuria aurantia agglutinin. A new isolation procedure and further study of its specificity towards various glycopeptides and oligosaccharides. Carbohydr Res 185: 15–26

    Google Scholar 

  • Domozych DS, Wells D, Shaw PJ (1991) Basket scales of the green alga Mesostigma viride: chemistry and ultrastructure. J Cell Sci 100: 351–371

    Google Scholar 

  • Gaut JR, Hendershot LM (1993) The modification and assembly of proteins in the endoplasmic reticulum. Curr Opin Cell Biol 5: 589–595

    Google Scholar 

  • Grunow A, Becker B, Melkonian M (1993) Isolation and characterization of the Golgi apparatus of a flagellate scaly green alga. Eur J Cell Biol 61: 10–20

    Google Scholar 

  • Kaushal GP, Szumilo T, Elbein AD (1988) Structure and biosynthesis of plant N-linked glycoproteins. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 14. Academic Press, London, pp 421–464

    Google Scholar 

  • Kawano LS, Bouck GB (1984) CER, cell surface-flagellum relationship during flagellar development, In: Wiesner W, Robinson D, Starr RC (eds) Compartments in algal cells and their interaction. Springer-Verlag, Berlin, pp 76–87

    Google Scholar 

  • Leadbeater BSC (1994) Cell coverings. In: Green IC, Leadbeater BSC (eds) The haptophyte algae. Clarendon Press, Oxford, pp 23–46

    Google Scholar 

  • Mansfield MA (1994) Protein blotting using polyvinylidene fluoride membranes. In: Dunbar BS (ed) Protein blotting. Oxford University Press, New York, pp 33–52

    Google Scholar 

  • Marin B, Melkonian M (1994) Flagellar hairs in prasinophytes (Chlorophyta): Ultrastructure and distribution on the flagellar surface. J Phycol 30: 659–678

    Google Scholar 

  • Martin GR, Timpl R (1987) Laminin and other basement membrane components. Annu Rev Cell Biol 35: 57–85

    Google Scholar 

  • McFadden GI, Melkonian M (1986) Golgi apparatus activity and membrane flow during scale biogenesis in the green flagellate Scherffelia dubia (Prasinophyceae). I. Flagellar regeneration. Protoplasma 130: 186–198

    Google Scholar 

  • Melkonian M, Preisig HR (1986) A light and electron microscopical study of Scherffelia dubia, a new member of the scaly green flagellates (Prasinophyceae). Nord J Bot 6: 235–256

    Google Scholar 

  • Melkonian M, Becker B, Becker D (1991) Scale formation in algae. J Electron Microsc Techn 17: 165–178

    Google Scholar 

  • Moestrup Ø (1982) Flagellar structure in algae: A review with new observations particularly on the Chrysophyceae, (Fucophyceae), Euglenophyceae and Reckertia. Phycologia 21: 427–528

    Google Scholar 

  • Monk BC, Adair WS, Cohen RA, Goodenough UW (1983) Topography of Chlamydomonas: Fine structure and polypeptide components of the gametic flagellar membrane surface and the cell wall. Planta 158: 517–533

    Google Scholar 

  • Neuhoff V, Phillip K, Zimmer HG, Mesecke S (1979) A simple, versatile, sensitive and volume independent method for quantitative protein determination which is independent of other external influences. Hoppe-Seyler's Z Physiol Chem 360: 1657–1670

    Google Scholar 

  • Rogalski AA, Bouck GB (1980) Characterization and localization of a flagellar-specific membrane glycoprotein in Euglena. J Cell Biol 86: 424–435

    Google Scholar 

  • Shibuya N, Tazaki K, Song Z, Tarr GE, Goldstein IJ, Peumans WJ (1989) A comparative study of bark lectins from three elderberry (Sambucus) species. J Biochem 106: 1098–1103

    Google Scholar 

  • Tarentino AL, Plummer TH (1994) Enzymatic deglycosylation of asparagine-linked glycans: purification, properties, and specificity of oligosaccharide-cleaving enzymes from Flavobacterium meningosepticum. Methods Enzymol 230: 44–56

    Google Scholar 

  • Teisere M, Nari J, Ferté N, Mutaftschiev S, Noat G (1994) Characterization of common carbohydrate antigenic determinants on soya bean cell-wall enzymes. Plant Cell Physiol 35: 121–125

    Google Scholar 

  • Wang WC, Cummings RD (1988) The immobilized leukoagglutinin from seeds of Maackia amurensis binds with high affinity to complex-type Asn-linked oligosaccharides containing terminal sialic acid-linked a-2,3 to penultimate galactose residues. J Biol Chem 263: 4576–4585

    Google Scholar 

  • Witman GB, Carlson K, Berliner J, Rosenbaum JL (1972) Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubles, matrix, membranes, and mastigonemes. J Cell Biol 54: 507–539

    Google Scholar 

  • Wu AM, Sugii S (1991) Coding and classification of d-galactose, N-acetyl-d-galactosamine, and β-d-Gal-[1 → 3(4)]-β-d-GlcpNAc, specificities of applied lectins. Carbohydr Res 213: 127–145

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Becker.

Additional information

Dedicated to Professor Eberhard Schnepf on the occasion of his 65th birthday.

This work was supported by the Deutsche Forschungsgemeinschaft and an Alexander von Humboldt Foundation research award to L. Perasso. We thank G. Noat for providing the anti-β-glucosidase and anti-pectin methyl esterase antibodies.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Becker, B., Perasso, L., Kammann, A. et al. Scale-associated glycoproteins of Scherffelia dubia (Chlorophyta) form high-molecular-weight complexes between the scale layers and the flagellar membrane. Planta 199, 503–510 (1996). https://doi.org/10.1007/BF00195179

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00195179

Key words

  • Flagellar membrane
  • Glycoprotein immunolocalization
  • Lectin
  • Scale
  • Scherffelia