Skip to main content
Log in

Investigations on GABAB receptor-mediated autoinhibition of GABA release

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

In this study, we have investigated the effects of phaclofen on the [3H] overflow from [3H]GABA prelabelled rat cortical slices and its interaction with the effects of (−)-baclofen in dependence of the stimulation frequency. (−)-Baclofen strongly depressed the [3H] overflow in the frequency range of 0.125 to 4 Hz to a constant residual level (ICIn50 = 0.37 μmol/l at 0.125 Hz), but became inactive above. The potency of the (+)-enantiomer was considerably weaker by a factor of nearly 1000. The GABAB antagonist, phaclofen, increased [3H] overflow at 300 μmol/l and, moremarkedly, at 3 and 1 mmol/l, respectively. However, the increase was virtually independent of the frequency between 0.125 and 16 Hz. If the compound interacted only with the putative GABAB autoreceptor involved in the regulation of GABA release, the extent of the enhancing effect should increase with increasing frequency because of the concomitant rise in synaptic GABA concentration. In order to further investigate this phenomenon, the IC50 of (−)-baclofen and antagonism of phaclofen against (−)-baclofen were determined at 0.125 Hz and 2 Hz, respectively. Whereas the IC50 of (−)-baclofen was 0.63 ± 0.04 μmol/l at 0.125 Hz, it increased to 4.88 + 0.45 μmol/l at 2 Hz. The pA10-values of phaclofen were about the same at both frequencies, whereas the pA2-values differed by a factor of 2.3. Therefore, the possibility should be considered that (−)-baclofen does not only interact with presynaptic GABA autoreceptors, but also may interact with other - presumably somatodendritic- GABAB-receptors whose pharmacology is not identical with that of the receptors by which (−)-baclofen exerts its effects on GABA release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson RA, Mitchell R (1985) Evidence for GABAB autoreceptors in median eminence. Eur J Pharmacol 118:3355–3358

    Google Scholar 

  • Arbilla S, Kamal L, Langer SZ (1979) Presynaptic GABA autoreceptors on GABA-ergic nerve endings of the rat substantia nigra. Eur J Pharmacol 57: 211–217

    Google Scholar 

  • Baumann PA (1985) Differential selectivity of neuroleptic drugs for presynaptic dopamine autoreceptors and postsynaptic dopamine receptors in rat striatum. Naunyn-Schmiedeberg's Arch Pharmacol (Suppl) 329: R95

    Google Scholar 

  • Baumann PA, Waldmeier PC (1981) Further evidence for negative feedback control of serotonin release in the central nervous system. Naunyn-Schmiedeberg's Arch Pharmacol 317:36–43

    Google Scholar 

  • Bonnanno G, Fontana G, Raiteri M (1988) Phaclofen antagonizes GABA at autoreceptors regulating release in rat cerebral cortex. Eur J Pharmacol 154:223–224

    Google Scholar 

  • Chakravarti IM (1971) Confidence set for the ratio of means of two normal distributions. Biometr Ztschr 13:89–94

    Google Scholar 

  • Dunnett CW (1955) A multiple procedure for comparing several treatments with a control. J Am Stat Assoc 50: 1096–1121

    Google Scholar 

  • Dunnett CW (1964) New tables for multiple comparisons with a control. Biometrics 20:482–491

    Google Scholar 

  • Dutar P, Nicoll RA (1988a) A physiological role for GABAB receptors in the central nervous system. Nature 332:1156–1158

    Google Scholar 

  • Dutar P, Nicoll RA (1988b) Pre- and postsynaptic GABAB receptors in the hippocampus have different pharmacological properties. Neuron 1:585–591

    Google Scholar 

  • Farnebo LO (1971) Release of monoamines evoked by field stimulation. Studies on some ionic and metabolic requirements. Acta Physiol Scand Suppl 371:19–27

    Google Scholar 

  • Giudicelli J-F (1971) Technical note No. 16: Calcul des pAx. J Pharmacol (Paris) 2:373–380

    Google Scholar 

  • Karlsson G, Pozza M, Olpe H-R (1988) Phaclofen: a GABAB blocker reduces long-duration inhibition in the neocortex. Eur J Pharmacol 148:485–486

    Google Scholar 

  • Kerr DJ, Ong J, Prager RH, Gynther BD, Curtis DR (1987) Phaclofen: a peripheral and central baclofen antagonist. Brain Res 405:150–154

    Google Scholar 

  • Kuriyama K, Kanmori K, Taguchi J, Yoneda Y (1984) Stress-induced enhancement of suppression of [3H]GABA release from striatal slices by presynaptic autoreceptors. J Neurochem 42: 943–950

    Google Scholar 

  • Limberger N, Spath L, Starke K (1986) A search for receptors modulating the release of γ-[3H]aminobuteric acid in rabbit caudate nucleus slices. J Neurochem 46:1109–1117

    Google Scholar 

  • Mitchell PR, Martin IL (1978) Is GABA release modulated by presynaptic receptors? Nature 274:904–905

    Google Scholar 

  • Pittaluga A, Asaro D, Pellegrini G, Raiteri M (1987) Studies on [3H]GABA and endogenous GABA release in rat cerebral cortex suggest the presence of autoreceptors on GABAB type. Eur J Pharmacol 144:45–52

    Google Scholar 

  • Waldmeier PC, Wicki P, Feldtrauer JJ, Baumann PA (1988) Potential involvement of a baclofen-sensitive autoreceptor in the modulation of the release of endogenous GABA from rat brain slices in vitro. Naunyn-Schmiedeberg's Arch Pharmacol 337: 289–295

    Google Scholar 

  • Yunger LM, Fowler PJ, Zarevics P, Setler PE (1984) Novel inhibitors of γ-aminobutyric acid (GABA) uptake: anticonvulsant actions in rats and mice. J Pharmacol exp Ther 228:109–115

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Send offprint requests to P. A. Baumann at the above address

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumann, P.A., Wicki, P., Stierlin, C. et al. Investigations on GABAB receptor-mediated autoinhibition of GABA release. Naunyn-Schmiedeberg's Arch Pharmacol 341, 88–93 (1990). https://doi.org/10.1007/BF00195063

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00195063

Key words

Navigation