Skip to main content
Log in

A biologically plausible model of early visual motion processing I: Theory and implementation

  • Original Papers
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A model of local image encoding is described which explicitly incorporates quantitative data about the number density, bandwidth and receptive field organisation of neurons involved in motion detection. The model solves the problem of extracting local velocity on the basis of inputs tuned to spatiotemporal frequency and sensitive to contrast. The spatiotemporally tuned, opponent motion filters are followed by a compressive non-linearity and comprise a first stage. The inter-stage signals are interpreted as those from single neurons and the second stage is modelled as a neural-network layer. The second stage uses semilinear units and models the effect of lateral, on-centre off-surround, intralayer connections. Characterisation of the first stage leads to a clarification of the concept of the psychophysical ‘channel’ and its relation to physiological data. The quantitative parametrisation of the model allows the simulation of several psychophysical phenomena which are reported in a companion paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelson E, Bergen J (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2, 284–299

    Article  CAS  Google Scholar 

  • Anderson SJ, Burr DC (1991) Spatial summation properties of directionally selective mechanisms in human vision. J Opt Soc Am A 8, 1330–1339

    Article  CAS  Google Scholar 

  • Barlow H, Levick W (1965) The mechanism of directionally selective units in rabbit's retina. J Physiol (Lond) 178, 477–504

    Article  CAS  Google Scholar 

  • Bergen J, Adelson E (1985) Mechanisms for the detection of flicker and motion. Optical Society of America Annual Meeting. In: J Opt Soc Am A 2:96

  • Blasdel C, Lund J, Fitzpatrick D (1985) Intrinsic connections of macaque striate cortex: Axonal projections of cells outside lamina 4C. J Neurosci 5:3350–3369

    Article  CAS  Google Scholar 

  • Bonhoeffer T, Grinvald A (1991) Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353:429–431

    Article  CAS  Google Scholar 

  • Borst A, Egelhaaf M (1989) Principles of motion detection. Trends Neurosci 12:297–305

    Article  CAS  Google Scholar 

  • Braddick O (1993) Segmentation versus integration in visula motion processing. Trends Neurosci 16:263–268

    Article  CAS  Google Scholar 

  • Burr D, Wijesundra S (1991) Orientation discrimination depends on spatial-frequency. Vision Res 31:1449–1452

    Article  CAS  Google Scholar 

  • Campbell F, Kulikowski J (1966) Orientation selectivity of the human visual system J Physiol (Lond) 187:347–445

    Google Scholar 

  • Daugman J (1984) Spatial visual channels in the Fourier plane, Vision Res 9:891–910

    Article  Google Scholar 

  • Daugman J (1985) Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J Opt Soc Am A 2:1160–1169

    Article  CAS  Google Scholar 

  • De Valois R, Albrecht D, Thorrel L (1982) Spatial frequency selectivity of cells in macaque visual cortex. Vision Res 22:545–559

    Article  Google Scholar 

  • Emerson R, Bergen J, Adelson E (1992) Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vision Res 32:203–218

    Article  CAS  Google Scholar 

  • Foster K, Gaska J, Nagler M, Pollen D (1985) Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. J Physiol 365:331–363

    Article  CAS  Google Scholar 

  • Green D, Swets J (1966) Signal Detection Theory and Psychophysics. Wiley, New York

    Google Scholar 

  • Grossberg S (1988) Nonlinear neural networks: principles, mechanisms, and architectures. Neural Networks 1:17–61

    Article  Google Scholar 

  • Grzywacz N, Yuille A (1991) A model for the estimate of local image velocity by cells in the visual cortex. Proc R Soc Lond B 239:129–161

    Article  Google Scholar 

  • Gurney K, Wright M (1992) A self-organising neural network model of image velocity encoding. Biol Cybern 68:173–181

    Article  CAS  Google Scholar 

  • Gurney K, Wright M (1994) Spatial integration of velocity signals via Markov Random Fields (abstract). Perception 23 (Suppl 2):A54

    Google Scholar 

  • Gurney K, Wright M (1996) A biologically plausible model of early visual motion processing. II. A psychophysical application. Biol Cybern 73: in press

  • Heeger D (1987) Model for the extraction of image flow. J Opt Soc Am A 4:1455–1471

    Article  CAS  Google Scholar 

  • Hess R, Plant G (1985) Temporal frequency discrimination in human vision: Evidence for an additional mechanism in the low spatial and high temporal frequency region. Vision Res 25:1493–1500

    Article  CAS  Google Scholar 

  • Hess R, Snowden R (1992) Temporal properties of human visual filters: number, shape and spatial covariation. Vision Res 32:47–59

    Article  CAS  Google Scholar 

  • Holub R, Morton-Gibson M (1981) Response of visual cortical neurons of the cat to moving sinusoidal gratings — response contrast function and spatiotemporal interaction. J Neurophysiol 46:1244–1259

    Article  CAS  Google Scholar 

  • Johnston A, McOwan P, Buxton H (1992) A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells. Proc R Soc Lond B 250:297–306

    Article  CAS  Google Scholar 

  • Kohonen T (1989) Self-organization and associative memory, 3rd edition. Springer, Berline Heidelberg New York

    Book  Google Scholar 

  • Legge G, Foley J (1980) Contrast masking in human vision. J Opt Soc Am A 70:1458–1471

    Article  CAS  Google Scholar 

  • Lehky S (1985) Temporal properties of visual channels measured by masking. J Opt Soc Am A 2:1260–1272

    Article  CAS  Google Scholar 

  • Livingstone M, Hubel D (1988) Segregation of form, color, movement and depth: anatomy, physiology and perception. Science 240:740–749

    Article  CAS  Google Scholar 

  • Malsburg C von der (1973) Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14:85–100

    Article  Google Scholar 

  • Mandler M, Makous W (1984) A three channel model of temporal frequency perception. Vision Res 12:1881–1887

    Article  Google Scholar 

  • Marčelja S (1980) Mathematical description of the responses of simple cortical cells. J Opt Soc Am, 70:1297–1300

    Article  Google Scholar 

  • Maunsell J, Van Essen D (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey J Neurosci 3:2563–2586

    Article  CAS  Google Scholar 

  • McKee S, Silverman G, Nakayama K (1986) Precise velocity discrimination despite variations in temporal frequency and contrast. Vision Res 26:609–619

    Article  CAS  Google Scholar 

  • Mortensen U, Suhl U (1991) An evaluation of sensory noise in the human visual system. Biol Cybern 66:37–47

    Article  CAS  Google Scholar 

  • Movshon J, Thompson I, Tolhurst D (1978) Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. J Physiol (Lond) 283:101–120

    Article  CAS  Google Scholar 

  • Movshon J, Adelson E, Gizzi M, Newsome W (1985) The analysis of moving visual patterns. In: Chagas C, Gattas R, Gross C (eds) Pattern recognition mechanisms. Vatican Press, Rome, pp. 117–151

    Chapter  Google Scholar 

  • Najib W (1993) Computer emulation of competitive dynamics. Master's thesis, Brunel University, Dept. of Electrical Engineering

  • Phillips G, Wilson H (1994) Orientation bandwidths of spatial mechanisms measured by masking. J Opt Soc Am A 1:226–232

    Article  Google Scholar 

  • Regan D (1991) A brief review of some of the stimuli and analysis methods used in spatiotemporal vision research. In: Regan D (ed) Vision and visual dysfunction, vol 10, Spatial vision. Macmillan, London

    Google Scholar 

  • Reichardt W (1961) Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In: Rosenblith W (ed) Sensory Communication. Wiley, New York

    Google Scholar 

  • Quick RF Jr. (1974) A vector-magnitude model of contrast detection. Kybernetik 16:65–67

    Article  Google Scholar 

  • Robson J (1966) Spatial and temporal contrast-sensitivity functions of the visual system. J Opt Soc Am A 56:1141–1142

    Article  Google Scholar 

  • Sachs M, Nachmias J, Robson J (1971) Spatial-frequency channels in human vision. J Opt Soc Am A 61:1176–1186

    Article  CAS  Google Scholar 

  • Schiller P, Logothetis N (1990) The color-opponent and broad-band channels of the primate visual system. Trends Neurosci 13:392–398

    Article  CAS  Google Scholar 

  • Smith A, Edgar G (1990) The influence of spatial frequency on perceived temporal frequency and perceived speed. Vision Res 30:1467–1474

    Article  CAS  Google Scholar 

  • Snippe H, Koenderink J (1992) Discrimination thresholds for channel-coded systems. Biol Cybern 66:543–551

    Article  Google Scholar 

  • Snowden R, Treue S, Erickson R, Andersen R (1991) The response of area MT and V1 neurons to transparent motion. J Neurosci 11:2768–2785

    Article  CAS  Google Scholar 

  • Stone L, Thompson P (1992) Human speed perception is contrast dependent. Vision Res 8:1535–1549

    Article  Google Scholar 

  • Stromeyer C III, Klein S, Zeevi Y (1987) Movement-selective mechanisms in human vision sensitive to high spatial frequencies. J Opt Soc Am A 68;1002–1005

    Article  Google Scholar 

  • Stromeyer C III, Klein S, Dawson B, Spillmann L (1982) Low spatial-frequency channels in human vision: adaptation and masking. Vision Res 22:225–233

    Article  Google Scholar 

  • Stromeyer C III, Kronauer R, Madsen J, Klein S (1984) Opponent-movement mechanisms in human vision. J Opt Soc Am A 1:876–884

    Article  Google Scholar 

  • Tolhurst D, Movshon J, Dean A (1983) The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res 23:775–785

    Article  CAS  Google Scholar 

  • Torre V, Poggio T (1978) A synaptic mechanism possibly underlying directional selectivity to motion. Proc R Soc Lond B 202:409–416

    Article  Google Scholar 

  • Santen van J, Sperling G (1984) Temporal covariance model of human motion perception. J Opt Soc Am A 1:451–473

    Article  Google Scholar 

  • Malsburg C von der (1973) Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14:85–100

    Article  Google Scholar 

  • Watson A (1982) Derivation of the impulse response: comments on the method of Roufs and Blommaert. Vision Res 22:1335–1337

    Article  CAS  Google Scholar 

  • Watson A, Ahumada A (1985) Model of human visual motion sensing. J Opt Soc Am A 2:322–341

    Article  CAS  Google Scholar 

  • Watson A, Robson J (1981) Discrimination at threshold: labelled detectors in human vision, Vision Res 21:1115–1122

    Article  CAS  Google Scholar 

  • Wilson H, Bergen J (1979) A four mechanism model for threshold spatial vision. Vision Res 19;19–32

    Article  CAS  Google Scholar 

  • Wilson H, Gelb D (1984) Modified line-element theory for spatial-frequency and width discrimination. J Opt Soc Am A 1:124–131

    Article  CAS  Google Scholar 

  • Wilson H, McFarlane D, Phillips G (1983) Spatial frequency tuning of orientation selective units estimated by oblique masking. Vision Res 9:873–882

    Article  Google Scholar 

  • Wilson H, Ferrera V, Yo C (1992) A psychophysically motivated model for two-dimensional motion perception. Vis Neurosci 9:79–97

    Article  CAS  Google Scholar 

  • Wright M, Gurney K (1992) Lower threshold of motion for one- and two-dimensional patterns in central and peripheral vision. Vision Res 32:121–134

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurney, K., Wright, M.J. A biologically plausible model of early visual motion processing I: Theory and implementation. Biol. Cybern. 74, 339–348 (1996). https://doi.org/10.1007/BF00194926

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00194926

Keywords

Navigation