Advertisement

Journal of Comparative Physiology A

, Volume 171, Issue 4, pp 483–493 | Cite as

Structure and kinematics of the prosternal organs and their influence on head position in the blowfly Calliphora erythrocephala Meig.

  • Thomas Preuss
  • Roland Hengstenberg
Article

Summary

The blowfly Calliphora has a mobile head and various, presumably proprioceptive, sense organs in the neck region. The “prosternal organs” are a pair of mechanosensory hair fields, each comprising ca. 110 sensilla. We studied their structure (Figs. 2–4), kinematics (Figs. 5, 6) and, after surgery, their influence on head posture (Figs. 7–11) in order to reveal their specific function.

The hair sensilla are structurally polarized, all in roughly the same direction, and are stimulated by dorsoventral bending of the hairs (Figs. 3, 4). This occurs indirectly by flap-movements of two contact sclerites (Figs. 3, 6); they move in the same direction during pitch turns of the head, in opposite directions during roll turns, and barely at all during yaw turns of the head (Fig. 5).

Bending and arresting all hairs of one field elicits a head roll bias to the non-operated side (Fig. 7) during tethered flight in visually featureless surroundings. In contrast, shaving all hairs of one field elicits a head roll to the operated side (Figs. 8–10). The surgically induced bias of head posture is not compensated within three days (Fig. 10). Our results show that the prosternal organs of Calliphora sense pitch and roll turns of the fly's head, and control at least its roll position.

Key words

Insects Neck sense organs Head/trunk coordination Postural control 

Abbreviations

HP° TP°

angular positions of the sagittal planes of the fly's head and thorax, respectively, relative to an external reference

HR° = HP — TP

head roll angle of the fly's head relative to its thorax, HR>0° for clockwise head roll, looking in flight direction

N

number of flies

n

number of measurements

PO

prosternal organ

SD

standard deviation

SEM

standard error of the mean

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bechterew W ( 1883) Ergebnisse der Durchschneidung des N. acusticus nebst Erörterung der Bedeutung der semicirculären Kanäle für das Körpergleichgewicht. Pflüger's Arch Physiol 30:312–347Google Scholar
  2. Bilo D (1991) Integration opto- und mechanosensorischer Afferenzen bei der Flugsteuerung der Haustaube (Columba livia var domestica). Zool Jb Physiol 95:323–330Google Scholar
  3. Buddenbrook W von (1928) Grundriss der Vergleichenden Physiologie. Bornträger, BerlinGoogle Scholar
  4. Budelmann BU (1979) Hair cell polarization in the gravity receptor system of the statocysts of the cephalopods Sepia officinalis and Loligo vulgaris. Brain Res 160:261–270Google Scholar
  5. Fraenkel G (1932) Untersuchungen über die Koordination von Reflexen und automatisch-nervösen Rhythmen bei Insekten. 1. Die Flugreflexe der Insekten und ihre Koordination. Z Vergl Physiol 16:371–393Google Scholar
  6. Fuldner D (1955) Morphologie und Histologie der Halshaut und ihrer Bildung bei einheimischen Odonaten. Wiss Z E M Arndt Univ Greifswald, Math-Naturwiss Reihe 4:609–623Google Scholar
  7. Geiger G, Poggio T (1977) On head and body movements of flying flies. Biol Cybern 25:177–180Google Scholar
  8. Gnatzy W, Tautz J ( 1980) Ultrastructure and mechanical properties of an insect mechanoreceptor: stimulus-transmitting structures and sensory apparatus of the cercal filiform hairs of Gryllus. Cell Tissue Res 213:441–463Google Scholar
  9. Goodman LJ (1959) Hair plates on the first cervical sclerites of the Orthoptera. Nature (Lond) 183:1106–1107Google Scholar
  10. Groebbels F (1929) Der Vogel als automatisch sich steuerndes Flugzeug. Naturwissenschaften 17:890–893Google Scholar
  11. Haskell PT (1959) Function of certain prothoracic hair receptors in the desert locust. Nature (Lond) 183:1007–1007Google Scholar
  12. Hengstenberg R (1988) Mechanosensory control of compensatory head roll during flight in the blowfly Calliphora erythrocephala Meig. J Comp Physiol A 163:151–165Google Scholar
  13. Hengstenberg R (1991) Gaze control in the blowfly Calliphora: a multisensory, two-stage integration process. Neurosciences 3:19–29Google Scholar
  14. Hengstenberg R (1992) Multisensory control in insect oculomotor systems. In: Wallman J, Miles FA (eds) Visual motion and its role in the stabilization of gaze. Revs Oculom Res 5: in pressGoogle Scholar
  15. Hengstenberg R, Sandeman DC, Hengstenberg B (1986) Compensatory head roll in the blowfly Calliphora during flight. Proc R Soc Lond B 227:455–482Google Scholar
  16. Hensler K, Robert D (1990) Compensatory head rolling during corrective flight steering in locusts. J Comp Physiol A 166:685–693Google Scholar
  17. Hoffmann Ch (1963) Vergleichende Physiologie der mechanischen Sinne. Fortschr Zool 16:268–332Google Scholar
  18. Hoffmann Ch (1964) Bau und Vorkommen von proprioceptiven Sinnesorganen bei den Arthropoden. Ergebn Biol 27:1–38Google Scholar
  19. Horn E, Lang HG (1978) Positional head reflexes and the role of the prosternal organ in the walking fly, Calliphora erythrocephala. J Comp Physiol 126:137–146Google Scholar
  20. Kien J (1979) Variability of locust motoneuron responses to sensory stimulation: a possible substrate for motor flexibility. J Comp Physiol A 134:55–68Google Scholar
  21. Land MF (1973) Head movements of flies during visually guided flight. Nature 243:199–300Google Scholar
  22. Land MF (1975) Head movements and fly vision. In: Horridge GA (ed) The Compound Eye and Vision of Arthropods. Clarendon Press, Oxford, pp 469–489Google Scholar
  23. Laverack MS (1979) External proprioceptors In: Mill PJ (ed) Structure and function of proprioceptors in the invertebrates. Chapman and Hall, London, Chap. 1, pp. 1–63Google Scholar
  24. Liske E (1977) The influence of head position on the flight behaviour of the fly Calliphora erythrocephala. J Insect Physiol 23:375–379Google Scholar
  25. Liske E (1978) Der Einfluß gerichteter Kopfbewegungen auf das Flugsteuerungssystem der Schmeißfliege Calliphora erythrocephala — Steuerung des Fluges durch die Augen und durch mechanorezeptorische Sinnesorgane. PhD thesis, Univ DarmstadtGoogle Scholar
  26. Lowne BT (1893–95) The blow-fly. R.H. Porter, London, Vol. II, pp. 633–634Google Scholar
  27. Meyer DL, Bullock TH (1977) The hypothesis of sense-organ dependent tonus mechanisms: history of a concept. Ann N Y Acad Sci 290:3–17Google Scholar
  28. Miall RC (1990) Visual control of steering in locust flight: the effects of head movement on responses to roll stimuli. J Comp Physiol A 166:735–744Google Scholar
  29. Milde JJ, Seyan HS, Strausfeld NJ ( 1987) The neck motor system of the fly Calliphora erythrocephala. II. Sensory organization. J Comp Physiol A 160:225–238Google Scholar
  30. Mittelstaedt H (1950) Physiologie des Gleichgewichtssinnes bei fliegenden Libellen. Z Vergl Physiol 32:422–463Google Scholar
  31. Peters W (1962) Die propriorezeptiven Organe am Prosternum und an den Labellen von Calliphora erythrocephala Mg. Z Morph Ökol Tiere 51:211–226Google Scholar
  32. Preuss T (1990) Bau und Wirkungsweise des Prosternalorgans und sein Einfluß auf die Kopfstellung bei der Schmeißfliege Calliphora erythrocephala. Diplomarbeit, Fakultät für Biologie, Universität TübingenGoogle Scholar
  33. Pringle J (1938) Proprioreception in insects. The function of the hair sensilla at the joints. J Exp Biol 15:467–473Google Scholar
  34. Richter S ( 1964) Die Feinstruktur des für die Mechanorezeption wichtigen Bereichs der Stellungshaare auf dem Prosternum von Calliphora erythrocephala Mg. (Diptera). Z Morph Ökol Tiere 54:202–218Google Scholar
  35. Sandeman DC (1976) Spatial equilibrium in arthropods. In: Mill PJ (ed) Structure and function of proprioceptors in the invertebrates. Chapman and Hall, London, Chap. 12, pp. 485–527Google Scholar
  36. Strausfeld NJ, Seyan HS (1985) Convergence of visual, haltere, and prosternal inputs at neck motor neurons of Calliphora erythrocephala. Cell Tissue Res 240:601–615Google Scholar
  37. Strausfeld NJ, Seyan HS, Milde JJ (1987) The neck motor system of the fly Calliphora erythrocephala. I. Muscles and motor neurons. J Comp Physiol A 160:205–224Google Scholar
  38. Theiss J (1979) Mechanoreceptive bristles on the head of the blowfly: mechanics and electrophysiology of the macrochaetae. J Comp Physiol 132:55–68Google Scholar
  39. Thurm U (1963) Die Beziehung zwischen mechanischen Reizgrößen und stationären Erregungszuständen bei Borstenfeldsensillen von Bienen. Z Vergl Physiol 46:351–382Google Scholar
  40. Thurm U (1965a) An insect mechanoreceptor I. Fine structure and adequate stimulus. Cold Spring Harb Symp Quant Biol 30:75–82Google Scholar
  41. Thurm U (1965b) An insect mechanoreceptor II. Receptor potentials. Cold Spring Harb Symp Quant Biol 30:83–94Google Scholar
  42. Vater G (1961) Vergleichende Untersuchungen über die Morphologie des Nervensystems der Dipteren. Z Wiss Zool 167:137–196Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Thomas Preuss
    • 1
  • Roland Hengstenberg
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenGermany

Personalised recommendations