Skip to main content
Log in

The human QARS locus: assignment of the human gene for glutaminyl-tRNA synthetase to chromosome 1q32–42

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

We have used a cDNA encoding the core region of the human glutaminyl-tRNA synthetase to determine the chromosomal localization of the corresponding gene. Southern blots of restricted DNA from a panel of rodent-human cell lines and in situ chromosome hybridization gave identical results showing that the human gene locus for glutaminyl-tRNA synthetase resides on the distal long arm of chromosome 1. There are now nine mapped aminoacyl-tRNA synthetase genes in the human genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bocian M, Walker AP (1987) Lip pits and deletion 1q32–41. Am J Med Genet 26:437–443

    Google Scholar 

  • Cirullo RE, Wasmuth JJ (1984) Assignment of the human MARS gene, encoding methionyl-tRNA synthetase to chromosome 12 using human x Chinese hamster cell hybrids. Cell Mol Genet 10:225–234

    Google Scholar 

  • Cirullo RE, Arredondo-Vega FX, Smith M, Wasmuth JJ (1983) Isolation and characterization of interspecific heat-resistant hybrids between a temperature-sensitive chinese hamster asparaginyl-tRNA synthetase mutant and normal human leukocytes: assignment of human asn S gene to chromosome 18. Somat Cell Genet 9:215–233

    Google Scholar 

  • Dana S, Wasmuth JJ (1982) Linkage of the leuS, emtB, and Chr genes on chromosome 5 in humans and expression of human genes encoding protein synthetic components in human-Chinese hamster hybrids. Somat Cell Genet 8:245–264

    Google Scholar 

  • Dang CV, Dang CV (1986) Multienzyme complex of amino-acyl-tRNA synthetases: an essence of being eukaryotic. Biochem J 239:249–255

    Google Scholar 

  • Denney RM, Craig IW (1976) Assignment of a gene for tryptophanyl transfer ribonucleic acid synthetase (E.C. 6.1.1.2) to human chromosome 14. Biochem Genet 14:99–117

    Google Scholar 

  • Deutscher MP (1984) The eukaryotic aminoacyl-tRNA synthetase complex: suggestions for its structure and function. J Cell Biol 99:373–377

    Google Scholar 

  • Gerken SC, Wasmuth JJ, Arfin SM (1986) Threonyl-tRNA synthetase gene maps close to leucyl-tRNA gene on human chromosome 5. Somat Cell Mol Genet 12:519–522

    Google Scholar 

  • Hellkuhl B, Grzeschik K-H (1978) Assignment of a gene for arysulfatase B to human chromosome 5 using human-mouse somatic cell hybrids. Cytogenet Cell Genet 22:203–206

    Google Scholar 

  • Kontis KJ, Arfin SM (1989) Isolation of a cDNA clone for human threonyl-tRNA synthetase: amplification of the structural gene in borrelidin-resistant cell lines. Mol Cell Biol 9:1832–1838

    Google Scholar 

  • Kunze N, Yang GC, Jiang ZY, Hameister H, Adolph S, Wiedorn KH, Richter A, Knippers R (1989) Localization of the active type I DNA topoisomerase gene on human chromosome 20q11.2–13.1 and two pseudogenes on chromosomes 1q23–24 and 22q11.2–13.1. Hum Genet 84:6–10

    Google Scholar 

  • McAlpine PJ, Shows TB, Boucheix C, Stranc LC, Berent TG, Pakstis AJ, Douté RC (1989) Report of the nomenclature committee and the 1989 catalog of mapped genes. (10th International Workshop on Human Gene Mapping) Cytogenet Cell Genet 51:15–66

    Google Scholar 

  • Mirande M, Waller JP (1989) Molecular cloning and primary structure of cDNA encoding the catalytic domain of rat liver aspartyl-tRNA synthetase. J Biol Chem 264:842–847

    Google Scholar 

  • Perry P, Wolff S (1974) New Giemsa method for the differential staining of sister chromatids. Nature 251:156–158

    Google Scholar 

  • Schimmel P (1987) Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of tRNA. Annu Rev Biochem 56:125–158

    Google Scholar 

  • Schmidt M, Ott G, Haaf T, Scheres JMJC (1985) Evolutionary conservation of fragile sites induced by 5-azacytidine and 5-azadesoxycytidine in man, gorilla, and chimpanzee. Hum Genet 71:342–350

    Google Scholar 

  • Sutherland GR, Parslow MI, Baker E (1985) New classes of common fragile sites induced by 5-azacytidine and bromodesoxyuridine. Hum Genet 69:233–237

    Google Scholar 

  • Thömmes P, Fett R, Schray B, Kunze N, Knippers R (1988) The core region of human glutaminyl-tRNA synthetase. Homologies with the Escherichia coli and yeast enzyme. Nucleic Acids Res 16:5391–5406

    Google Scholar 

  • Tsui FWL, Siminovitch L (1987) Isolation, structure and expression of mammalian genes for histidyl-tRNA synthetase. Nucleic Acids Res 15:3349–3367

    Google Scholar 

  • Walter B, Yen A, Wasmuth JJ, Smith M (1987) Selection of somatic cell hybrids containing human chromosome 9 using a temperature-sensitive CHO valyl-tRNA synthetase mutant. Cytogenet Cell Genet 46:710

    Google Scholar 

  • Wasmuth JJ, Carlock LR (1986) Chromosomal localization of human gene for histidyl-tRNA synthetase: clustering of genes encoding aminoacyl-tRNA synthetase on human chromosome 5. Somat Cell Mol Genet 12:513–517

    Google Scholar 

  • Wienker TF, Hudeck G, Bissbort S, Mayerova A, Mauff G, Bender K (1987) Linkage studies in a pedigree with Van der Woude syndrome. J Med Genet 24:160–162

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunze, N., Bittler, E., Fett, R. et al. The human QARS locus: assignment of the human gene for glutaminyl-tRNA synthetase to chromosome 1q32–42. Hum Genet 85, 527–530 (1990). https://doi.org/10.1007/BF00194231

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00194231

Keywords

Navigation