Skip to main content
Log in

Crossovers within a short DNA sequence indicate a long evolutionary history of the APRT*J mutation

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

Adenine phosphoribosyltransferase (APRT) deficiency causing 2,8-dihydroxyadenine urolithiasis and renal failure is present at a high frequency among the Japanese but not other ethnic groups. A special type of mutant allele, designated APRT*J, with a nucleotide substitution at codon 136 from ATG (Met) to ACG (Thr) is carried by approximately 79% of all Japanese 2,8-dihydroxyadenine urolithiasis patients. We analyzed mutant alleles of 39 APRT deficient patients using a specific oligonucleotide hybridization method after in vitro amplification of a part of the genomic APRT sequence. We found that 24 had only APRT*J alleles. Determination of the haplotypes of 194 APRT alleles from control Japanese subjects and of the 48 different APRT*J alleles indicated that normal alleles occur in four major haplotypes, whereas all APRT*J alleles occur in only two. These results suggest that all APRT*J alleles have a single origin and that this mutant sequence has been maintained for a long period, as calculated from the frequency of the recombinant alleles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arrand JE, Murray AM, Spurr N (1987) SphI restriction fragment lenght polymorphism on human chromosome 16 detected with an APRT gene probe. Nucleic Acids Res 15:9615

    Google Scholar 

  • Bodmer WF (1972) Population genectics of the HL-A system: retrospect and prospect. In: Dausset J, Colombani (eds) Histocompatibility testing. Munksgaard, Copenhagen, pp 611–617

    Google Scholar 

  • Broderick TP, Schaff DA, Bertino AM, Dush MK, Tischfield JA, Stambrook PJ (1987) Comparative anatomy of the human APRT gene and enzyme: nucleotide sequence divergence and conservation of a nonrandom CpG dinucleotide arrangement. Proc Natl Acad Sci USA 84:3349–3353

    Google Scholar 

  • Bunn HF, Forget BG (1986) Hemoglobin: molecular, genetic and clinical aspects. Saunders, Philadelphia

    Google Scholar 

  • Chakravarti A, Buetow KH, Antonarakis SE, Waber PG, Boehm CD, Kazazian H (1984) Nonuniform recombination within the human β-globin gene cluster. Am J Hum Genet 36:1239–1258

    Google Scholar 

  • Chakravarti A, Elbein SC, Permutt MA (1986) Evidence for increased recombination near the human insulin gene: implication for disease association studies. Proc Natl Acad Sci USA 83:1045–1049

    Google Scholar 

  • Cox DW, Woo SLC, Mansfield T (1985) DNA restriction fragments associated with α1-antitrypsin indicate a single origin for deficiency allele PI Z. Nature 316:79–81

    Google Scholar 

  • Diamond JM, Rotter JI (1987) Observing the founder effect in human evolution. Nature 329:105–106

    Google Scholar 

  • DiLella AG, Marvit J, Brayton K, Woo SLC (1987) An aminoacid substitution involved in phenylketonuria is in linkage disequilibrium with DNA haplotype 2. Nature 327:333–336

    Google Scholar 

  • Dush MK, Sikela JM, Khan SA, Tischfield JA, Stambrook PJ (1985) Nucleotide sequence and organization of the mouse adenine phosphoribosyltransferase gene: presence of a coding region common to animal and bacterial phosphoribosyltransferases that has a variable intron/exon arrangement. Proc Natl Acad Sci USA 82:2731–2735

    Google Scholar 

  • Fujimori S, Akaoka I, Sakamoto K, Yamanaka H, Nishioka K, Kamatani N (1985) Common characteristics of mutant adenine phosphoribosyltransferases from four separate Japanese families with 2,8-dihydroxyadenine urolithiasis associated with partial enzyme deficiencies. Hum Genet 71:171–176

    Google Scholar 

  • Hershey HV, Taylor MW (1986) Nucleotide sequence and deduced amino acid sequence of Escherichia coli adenine phosphoribosyltransferase and comparison with other analogous enzymes. Gene 43:287–293

    Google Scholar 

  • Hidaka Y, Tarle SA, Kelley WN, Palella TD (1987) Nucleotide sequence of human APRT gene. Nucleic Acid Res 15:9086

    Google Scholar 

  • Hidaka Y, Tarle SA, Fujimori S, Kamatani N, Kelley WN, Palella TD (1988) Human adenine phosphoribosyltransferase deficiency: demonstration of a single mutant allele common to the Japanese. J Clin Invest 81:945–950

    CAS  PubMed  Google Scholar 

  • Hidaka Y, Tarle SA, Kamatani N, Kelley WN, Palella TD (1989) Human adenine phosphoribosyltransferase (APRT) deficiency single mutant allele common to the Japanese. In: Mikanagi K, Nishioka K, Kelley WN (eds) Purine and pyrimidine metabolism in man VI, part A. Plenum Press, New York, pp 43–50

    Google Scholar 

  • Kamatani N, Takeuchi F, Nishida Y, Yamanaka H, Nishioka K, Tatara K, Fujimori S, Kaneko K, Akaoka I, Tofuku Y (1985) Severe impairment in adenine metabolism with a partial deficiency of adenine phosphoribosyltransferase. Metabolism 34:164–168

    Article  CAS  PubMed  Google Scholar 

  • Kamatani N, Kuroshima S, Terai C, Kawai K, Mikanagi K, Nishioka K (1987a) Selection of human cells having two different types of mutations in individual cells (genetic/artificial mutants)-application to the diagnosis of the heterozygous state for a type of adenine phosphoribosyltransferase deficiency. Hum Genet 76:148–152

    Google Scholar 

  • Kamatani N, Terai C, Kuroshima S, Nishioka K, Mikanagi K (1987b) Genetic and clinical studies on 19 families with adenine phosphoribosyltransferase deficiences. Hum Genet 75:163–168

    Google Scholar 

  • Kamatani N, Sonoda T, Nishioka K (1988) Distribution of the patients with 2,8-dihydroxyadenine urolithiasis and adenine phosphoribosyltransferase deficiency in Japan. J Urol 140:1470–1472

    Google Scholar 

  • Kamatani N, Kuroshima S, Terai C, Hidaka Y, Palella TD, Nishoka K (1989) Detection of an amino acid substitution in the mutant enzyme for a special type of adenine phosphoribosyltransferase (APRT) deficiency by sequence specific protein cleavage. Am J Hum Genet 45:325–331

    CAS  PubMed  Google Scholar 

  • Neel JV, Satoh C, Goriki K, Fujita M, Takahashi N, Asakawa J-I, Hazama R (1986) The rate which spontaneous mutation alters the electrophoretic mobility of polypeptides. Proc Natl Acad Sci USA 83:389–393

    Google Scholar 

  • Ohta T (1973) Slightly deleterious mutant substitutions in evolution. Nature 246:96–98

    Google Scholar 

  • Petersen GM, Rotter JI, Cantor RM, Field LL, Greenwald S, Lim JS, Roy C, Schoenfeld V, Lowden JA, Kaback MM (1983) The Tay-Sachs disease gene in North American Jewish populations: geographic variations and origin. Am J Hum Genet 35:1258–1269

    Google Scholar 

  • Riordan JR, Rommens JM, Kerem B-S, Alon N, Rozmahel, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou J-L, Drumm ML, Iannuzzi MC, Collins FS, Tsui L-C (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1080

    CAS  PubMed  Google Scholar 

  • Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich Ha (1986) Analysis of enzymatically amplified β-globin and HLA-DQa DNA with allele-specific oligonucleotide probes. Nature 324:163–166

    Google Scholar 

  • Simmonds HA, Sahota AS, Van Acker KJ (1989) Adenine phosphoribosyltranserase deficiency and 2,8-dihydroxyadenine lithiasis. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) Metabolic basis of inherited disease. McGraw-Hill, New York, pp 1029–1044

    Google Scholar 

  • Stambrook PJ, Dush MD, Trill JJ, Tischfield JA (1984) Cloning of a functional human adenine phosphoribosyltransferase (APRT) gene: identification of a restriction fragment lenght polymorphism and preliminary analysis of DNAs from APRT-deficient families and cell mutants. Somat Cell Mol Genet 10:359–367

    Google Scholar 

  • Tsuji S, Choudary PY, Martin BM, Stubblefield BK, Mayor JA, Barranger JA, Ginns EI (1987) A mutation in the human glucocerebrosidase gene in neuronopathic Gaucher's disease. N Engl J Med 316:570–575

    Google Scholar 

  • Weatherall DJ, Clegg JB, Higgs DR, Wood WG (1989) The hemoglobinopathies. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) Metabolic basis of inherited disease. McGraw-Hill, New York, pp 2281–2339

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamatani, N., Kuroshima, S., Hakoda, M. et al. Crossovers within a short DNA sequence indicate a long evolutionary history of the APRT*J mutation. Hum Genet 85, 600–604 (1990). https://doi.org/10.1007/BF00193582

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00193582

Keywords

Navigation