Skip to main content
Log in

Physiological and molecular effects of brassinosteroids on Arabidopsis thaliana

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

We examined the effects of brassinosteroids on Arabidopsis thaliana (L.) Henyh. ecotype Columbia in order to develop a model system for studying gene regulation by plant steroids. Submicromolar concentrations of two brassinosteroids, brassinolide and 24-epibrassinolide, stimulated elongation of Arabidopsis peduncles and inhibited root elongation, respectively. Furthermore, brassinolide altered the abundance of specific in vitro translatable mRNAs from peduncles and whole plants of Arabidopsis. Root elongation in the auxin-insensitive Arabidopsis mutant axr1 was inhibited by 24-epibrassinolide but not by 2,4-D, indicating an independent mode of action for these growth regulators in this physiological response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BR:

brassinolide

EBR:

24-epibrassinolide; 2.4-D,2,4-dichlorophenoxyacetic acid

KPSC:

10 mM potassium phosphate, pH 6.0, 2% sucrose, 50 μg/ml chloramphenicol

PAGE:

polyacrylamide gel electrophoresis

References

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD, Zurek DM (1991) Molecular analysis of brassinolide action in plant growth and development. In: Cutler HG, Yokota T, Adam G (eds) Brassinosteroids: Chemistry, bioactivity and applications, ACS Symposium Series; 474. American Chemical Society, Washington, DC, pp 122–140

    Google Scholar 

  • Clouse SD, Zurek DM, McMorris TC, Baker ME (1992) Effect of brassinolide on gene expression in elongating soybean epicotyls. Plant Physiol 100:1377–1383

    Article  PubMed  CAS  Google Scholar 

  • Estelle MA, Somerville CR (1987) Auxin-resistant mutants of Arabidopsis with an altered morphology. Mol Gen Genet 206:200–206

    Article  CAS  Google Scholar 

  • Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889–895

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:148–151

    Article  Google Scholar 

  • Gregory LE, Mandava NB (1982) The activity and interaction of brassinolide and gibberellic acid in mung bean epicotyls. Physiol Plant 54:239–243

    Article  CAS  Google Scholar 

  • Grove MD, et al. (1979) A unique plant growth promoting steroid from Brassica napus pollen. Nature 281:216–217

    Article  CAS  Google Scholar 

  • Ikekawa N, Zhao YJ (1991) Application of 24-Epibrassinolide in Agriculture. In: Cutler HG, Yokota T, Adam G (eds) Brassinosteroids: Chemistry, bioactivity and applications, ACS Symposium Series; 474. American Chemical Society, Washington, DC, pp 280–291

    Google Scholar 

  • Katsumi M (1985) Interaction of a brassinosteroid with IAA and GA3 in the elongation of cucumber hypocotyl sections. Plant Cell Physiol 26:615–625

    CAS  Google Scholar 

  • Klee H, Estelle M (1991) Molecular genetic approaches to plant hormone biology. Ann Rev Plant Physiol Plant Mol Biol 42:529–551

    Article  CAS  Google Scholar 

  • Lincoln C, Britton JH, Estelle M (1990) Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2:1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Mandava NB, Sasse JM, Yopp JH (1981) Brassinolide, a growthpromoting steroidal lactone. II. Activity in selected gibberellin and cytokinin bioassays. Physiol Plant 53:453–461

    Article  CAS  Google Scholar 

  • Mandava NB (1988) Plant growth-promoting brassinosteroids. Ann Rev Plant Physiol Plant Mol Biol 39:23–52

    Article  CAS  Google Scholar 

  • McMorris TC, Donaubauer JR, Silveira MH, Molinski TF (1991) Synthesis of brassinolide. In: Cutler HG, Yokota T, Adam G (eds) Brassinosteroids: Chemistry, bioactivity and applications, ACS Symposium Series, 474. American Chemical Society, Washington, DC, pp 36–42

    Google Scholar 

  • Mitchell JW, Mandava NB, Worley JP, Plimmer JR (1970) Brassins: A new family of plant hormones from rape pollen. Nature 225:1065–1066

    Article  PubMed  CAS  Google Scholar 

  • Sasse JM (1985) The place of brassinolide in the sequential response to plant growth regulators in elongating tissue. Physiol Plant 63:303–308

    Article  CAS  Google Scholar 

  • Sasse JM (1990) Brassinolide-induced elongation and auxin. Physiol Plant 80:401–408

    Article  CAS  Google Scholar 

  • Sasse JM (1991) The case for brassinosteroids as endogenous plant hormones. In: Cutler HG, Yokota T, Adam G (eds) Brassinosteroids: Chemistry, bioactivity and applications, ACS Symposium Series; 474. American Chemistry Society, Washington, DC, pp 158–166

    Google Scholar 

  • Sasse JM (1991) Brassinolide-induced elongation. In: Cutler HG, Yokota T, Adam G (eds) Brassinosteroids: Chemistry, bioactivity and applications, ACS Symposium Series, 474. American Chemical Society, Washington, DC, pp 255–264

    Google Scholar 

  • Yopp JH, Mandava NB, Sasse JM (1981) Brassinolide, a growth-promoting steroidal lactone. I. Activity in selected auxin bioassays. Physiol Plant 53:445–452

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clouse, S.D., Hall, A.F., Langford, M. et al. Physiological and molecular effects of brassinosteroids on Arabidopsis thaliana . J Plant Growth Regul 12, 61 (1993). https://doi.org/10.1007/BF00193234

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1007/BF00193234

Keywords

Navigation