Skip to main content

PCB metabolism by ectomycorrhizal fungi

This is a preview of subscription content, access via your institution.

References

  1. Bae, K-S, Barton LL (1989) Alkaline phosphatase and other hydrolyases by Cenococcum graniforme. an ectomycorrhizal fungus. Appl Environ Microbiol 55: 2511–2516.

    Google Scholar 

  2. Bedard DL, Brennan MJ, Unterman R (1984) Bacterial degradation of PCBs: Evidence of distinct pathways in Corynebacterium sp. MB1 and Alcaligenes eutrophus H850. In: Addis G, Komai R (eds) Proceedings: 1983 PCB Seminar. Electrical Power Research Inst., Palo Alto, Calif. p 4–101--4–118.

    Google Scholar 

  3. Bedard DL, Unterman R, Bopp LH, Brennan MJ, Haberl ML, Johnson C (1986) Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Appl Environ Microbiol 51: 761–768.

    Google Scholar 

  4. Donnelly PK, Entry JA, Crawford DL (1993) Degradation of atrazine and 2,4-dichlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentrations in vitro. Appl Environ Microbiol 59: 2642–2647.

    Google Scholar 

  5. Donnelly PK, Entry JA, Rygiewicz PT, Crawford DL (1994) Mineralization of atrazine and 2,4-D by mycorrhizal fungi in a culture system with simulated soil. J Environ Qual (Submitted).

  6. Eaton DC (1985) Mineralization of polychlorinated biphenyls by Phanerochaete chrysoporium A ligninolytic fungus. Enzyme Microb Technol 7: 194–196.

    Google Scholar 

  7. Field JA, de Jong E, Feijoo-Costa G, de Bont JAM (1993) Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Tibtech 11: 44–49.

    Google Scholar 

  8. Furukawa K, Tonomura K, Kamibayashi A (1978) Effect of chlorine substitution on the biodegradability of polychlorinated biphenyls. Appl Environ Microbiol 35: 223–227.

    Google Scholar 

  9. Harley JL (1989) The significance of mycorrhiza. Mycol Res 92: 129–139.

    Google Scholar 

  10. Sahasrabudhe SR, Modi VV (1987) Microbial degradation of chlorinated aromatic compounds. Microbiol Sci 4: 300–303.

    Google Scholar 

  11. Sinton GL, Fan LT, Erickson LE, Lee SM (1986) Biodegradation of 2,4–0 and related xenobiotic compounds. Enzyme Microb Technol 8: 395–403.

    Google Scholar 

  12. Unterman R, Bedard DL, Brennan MJ, Bopp LH, Mondello FJ, Brooks RE, Mobley DP, McDermott JB, Schwatrz CC, Dietrich DK (1988) Biological approaches for PCB degradation. In: Omenn GS et al. (eds) Reducing risks from environmental chemicals through biotechnology. Plenum Press, p 253–269.

  13. Zhu H, Guo D-C, Dancik BP (1990) Purification and characterization of an extracellular acid proteinase from the ectomycorrhizal fungus Hebeloma crustuliniforme. Appl Environ Microbiol 56: 837–843.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. S. Fletcher.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Donnelly, P.K., Fletcher, J.S. PCB metabolism by ectomycorrhizal fungi. Bull. Environ. Contam. Toxicol. 54, 507–513 (1995). https://doi.org/10.1007/BF00192592

Download citation

Keywords

  • Waste Water
  • Water Management
  • Water Pollution
  • Ectomycorrhizal Fungus