Skip to main content
Log in

Sterilization of HIV by gamma irradiation

A bone allograft model

  • Published:
International Orthopaedics Aims and scope Submit manuscript

Summary

A human immuno-deficiency virus (HIV) infected bone allograft model has been created using HTLV-IIIB virus in a concentration simulating a massively HIV infected bone allograft donor [HTLV-III is the denomination initially given to the human immuno-deficiency by the american team of Prof. Gallo. It represent the virus HIV 1 of the present international nomenclature]. 5×104 tissue culture infective doses per ml. of virus were placed within the medullary cavity of bovine femora and tibiae with a radiation dosimeter, and the ends sealed with lead. The bone/virus model was maintained at −70° C while being irradiated with 1 to 4 megarads of gamma irradiation in increments of 0.5 megarads. The study showed that the HTLV-IIIB virus is a relatively radio-resistant organism, a property common to most viruses. The results suggest that HTLV-IIIB can be inactivated in bone infected with a clinically significant viral load, as may be found in donors who are initially negative when screened for HIV. It is recommended that bone allografts which are secondarily sterilized by gamma irradiation receive at least 2.5 megarads. The amount of radiation absorbed by the bone cortex was minimal.

Résumé

Un modèle d'allogreffe osseuse infectée par le virus de l'immuno-déficience humaine (VIH) a été créé en utilisant le virus HTLV-III B [HTLV-III est l'appellation donnée initialement au virus de l'immuno-déficience humaine par l'équipe américaine du Pr Gallo. Il équivaut donc au virus HIV 1 de l'actuelle nomenclature internationale.] à une concentration simulant le cas le plus grave: correspondant à un donneur d'allogreffe osseuse infecté de façon massive par le VIH, 5×104 doses de culture de tissus infectés par ml de virus ont été placées dans le canal médullaire d'un fémur et d'un tibia bovins avec un dosimètre à radiations, les extrémités du modèle étant scellées par du plomb. Le modèle os/virus a été maintenu à une température de −70° Celsius tout en étant soumis à une irradiation gamma de 1 à 4 mégarads par paliers de 0,5 mégarads. Cette étude a montré que le virus HTLV-III B est un organisme relativement résistant aux radiations, propriété commune à la plupart des virus. Les résultats laissent à penser que le virus HTLV-III B pourrait être inactivé dans un os infecté par une charge virale cliniquement significative, comme on peut en trouver chez les donneurs qui réagissent initialement de façon négative aux tests VIH courants. Il est recommandé que les allogreffes osseuses stérilisées par radiations gamma reçoivent au moins 2,5 mégarads. La quantité de radiation absorbée par la corticale osseuse était minimale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allan DG, Lavoie GJ, McDonald S, Oakeshott R, Gross AE (1991) Proximal femoral allografts in revision hip arthroplasty. J Bone Joint Surg 73: 235–240

    Google Scholar 

  2. Baker JL, Kelen GD, Sivertson KT, Quinn TC (1987) Unsuspected Human Immunodeficiency Virus in critically ill emergency patients. JAMA 257: 2609

    Google Scholar 

  3. Bigby PD (1988) Inactivation of human immunodeficiency virus (AIDS virus) by gamma and x-ray irradiation in body fluids and forensic evidence. FBI Law Enforcement Bulletin 8–9

  4. Bright RW, Burchardt H (1983) The biomechanical properties of preserved bone graft. In: Friedlaender GE, Mankin HJ, Sell KW (eds) Osteochondral allografts. Little Brown, Boston Toronto, pp 241–247

    Google Scholar 

  5. Buck BE, Malinin TI, Brown MD (1989) Bone transplantation and human immunodeficiency virus — An estimate of risk of acquired immunodeficiency syndrome (AIDS). Clin Orthop 240: 129–136

    Google Scholar 

  6. Burt MM, Ley FJ (1963) Studies on the dose requirement for the radiation sterilisation of medical equipment. Influence of suspending media. J App Bacteriol 26: 484–489

    Google Scholar 

  7. Centres for Disease Control (1987) Human immuno-deficiency virus infection transmitted from an organ donor screened for HIV antibody — North Carolina. MMWR 36: 306–314

    Google Scholar 

  8. Centres for Disease Control (1988) Transmission of HIV through bone transplantation; case report and public health recommendation — Atlanta. MMWR 37: 597–599

    Google Scholar 

  9. Clark SJ, Saag MS, Decker WD, et al (1991) High titers of cytopathic virus in plasma of patients with symptomatic primary HIV-1 infection. N Engl J Med 324: 954–960

    Google Scholar 

  10. Conway B, Tomford WW, Hirsch MS, Schooley RT, Mankin HJ (1990) Effects of Gamma Irradiation of HIV-1 in a Bone Allograft Model. Trans Orthop Res Soc 15: 225

    Google Scholar 

  11. Daar ES, Moudgil T, Meyer RD, Ho DD (1991) Transient high levels of viremia in patients with primary human immunodeficiency virus type 1 infection. N Engl J Med 324: 961–964

    Google Scholar 

  12. Gardiner JF, Peel MM (1986) Introduction to sterilisation and disinfection. Churchill Livingstone, Melbourne

    Google Scholar 

  13. Gibbons MJ, Butler DL, Grood ES, Bylski-Austrow DI, Levy MS, Noyes FR (1991) Effects of gamma irradiation on the initial mechanical and material properties of goat bone-patella tendon-bone allografts. J Orthop Res 9: 209–218

    Google Scholar 

  14. Grecz N, Upadhyay J, Tang TC (1967) Effects of temperature on radiation resistance of spores of Clostridium Botulinum 33A. Canad J Microbiol 13: 287–293

    Google Scholar 

  15. L'Age-Stehr J, Schwarz A, Offerman G, et al (1985) HTLV-III infection in Kidney transplant recipients (letter). Lancet 12: 1361–1362

    Google Scholar 

  16. Li P, Burrell CJ (1992) Synthesis of human immunodeficiency virus DNA in a cell-to-cell transmission model. AIDS Research and Human Retroviruses 8: 253–259

    Google Scholar 

  17. Loty B, Courpied JP, Tomeno B, Postel M, Forest M, Abelanet R (1990) Bone allografts sterilised by irradiation. Biological properties, procurement and results of 150 massive allografts. Int Orthop 14: 237–242

    Google Scholar 

  18. Oakeshott RD, Morgan DAF, Zukor DJ, Rudan JF, Brookes PJ, Gross AE (1987) Revision total hip arthroplasty with osseous allograft reconstruction — A clinical and roentgenographic analysis. Clin Orthop 225: 37–60

    Google Scholar 

  19. Pelker RR, Friedlaender GE, Markham TC (1983) Biomechanical properties of bone allografts. Clin Orthop 174: 54–57

    Google Scholar 

  20. Pellet S, Strong DM, Temesi A, Matthews JG (1983) Effects of irradiation on frozen corticocancellous bone allograft incorporation and immunogenicity. In: Friedlander GE, Mankin HJ, Sell KW (eds) Osteochondral Allografts. Little Brown, Boston, pp 353–361

    Google Scholar 

  21. Simonds RJ, Homlberg SD, Hurwitz RL, et al (1992) Transmission of human immunodeficiency virus type 1 from a seronegative organ and tissue donor. New England J Med 326: 726–732

    Google Scholar 

  22. Spire B, Dormont B, Barre-Sinoussi F, Montagnier L, Chermann JC (1985) Inactivation of lymphadenopathy — Associated virus by heat, gamma rays, and ultraviolet light. Lancet 1: 188–189

    Google Scholar 

  23. Sullivan R, Fassolitis AC, Larkin EP, Read RB, Peeler JT (1971) Inactivation of Thirty Viruses by Gamma Irradiation. App Microbiol 22: 61–65

    Google Scholar 

  24. Ward JW, Holmberg SD, Allen JR, et al (1988) Transmission of human immunodeficiency virus (HIV) by blood transfusions screened as negative for HIV antibody. N Engl J Med 318: 473–478

    Google Scholar 

  25. WHO (1990) Global Program on AIDS. Virus Information Exchange Newsletter 7: 140–144

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, D.G., Li, P., Stephenson, A.J. et al. Sterilization of HIV by gamma irradiation. International Orthopaedics 18, 172–176 (1994). https://doi.org/10.1007/BF00192474

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00192474

Keywords

Navigation