Skip to main content
Log in

Multifractal and entropic properties of landslides in Japan

  • Original Paper
  • Published:
Geologische Rundschau Aims and scope Submit manuscript

Abstract

Landslide distributions in two major areas of northern Japan, Tohoku and Hokkaido, are analysed for multifractal properties. For the latter data set, also the multifractal spectrum for the spatial landslide size distribution is determined and compared to the probability distribution. It is concluded that the fields possess definite multifractal character. This finding is supported by the known multifractality of the main triggering processes, rain and earthquakes. Further support comes from a configuration entropy analysis which is found to be a useful complimentary tool to multifractal analysis. Models leading to multifractality are briefly reviewed. Careful attention is paid to the algorithms used and to the verification of the numerical results. Some general suggestions concerning numerical methods are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bak P, Tang C, Wiesenfeld K (1988) Self-organized criticality. Phys Rev A 38:364–374

    Article  Google Scholar 

  • Barnsley MF (1988) Fractals Everywhere. Academic Press, San Diego

    Google Scholar 

  • Beghdadi A, Andraud C, Lafait J, Peiro J, Perreau M (1994) Entropic and multifractal analysis of disordered morphologies. In: Vicsek, M, and Matsushita M (eds) Fractals in Natural Science. World Scientific, Singapore, pp 360–368

    Chapter  Google Scholar 

  • Borgani S, Murante G, Provenzale A, Valdarnini R (1993) Multifractal Analysis of the galaxy distribution: Reliability of results from finite data sets. Phys Rev E 47:3879–3888

    Article  Google Scholar 

  • Carlson JM, Grannan ER, Swindle GH (1993) Self-organizing systems at finite driving rates. Phys Rev E 47:93–105

    Article  Google Scholar 

  • Crozier MJ (1986) Landslides: causes, consequences and environment. Croom Helm, London

    Google Scholar 

  • De Wijs HJ (1953) Statistics of Ore Distribution. Part II: Theory of binomial distribution applied to sampling and engineering problems. Geol Mijnb 15:12–24

    Google Scholar 

  • Emeerson LM, Roberts AJ (1994) Fractal and multi-fractal patterns of seaweed settlement. Electronic preprint ftp.usq.edu.au

  • Evertsz CJG, Mandelbrot BB (1992) Multifractal Measures. In: Peitgen HO, Jürgens H, Saupe D (eds) Chaos and Fractals. Springer-Verlag, New York, pp 921–953

    Google Scholar 

  • Feder J (1988) Fractals. Plenum Press, New York

    Book  Google Scholar 

  • Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the Navier-Stokes equation. Phys Rev Lett 56:1505–1508

    Article  Google Scholar 

  • Fukuoka H, Hiura H, Goltz C (1994) Fractal aspects of the landslide distribution and size-frequency relation of landslides in Hokkaido. Proc Annual Conf of the Japan Landslide Society:23–26 (in Japanese)

  • Geilikman MB, Golubeva TV, Pisarenko VF (1990) Multifractal patterns of seismicity. Earth and Planetary Science Letters 99:127–132

    Article  Google Scholar 

  • Godano C, Caruso V (1995) Multifractal analysis of earthquake catalogues. Geophys J Int 121:385–392

    Article  Google Scholar 

  • Goltz C, Welle W (1988) Iterative Funktionensysteme: Eine neue Methode in der Computergraphik. Journal der Deutschen Geophysikalischen Gesellschaft 4:24–27 (in German)

    Google Scholar 

  • Grassberger P (1988) Finite sample corrections to entropy and dimension estimates. Phys Letts A 128:369–373

    Article  Google Scholar 

  • Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50:346–349

    Article  Google Scholar 

  • Halsey TC, Jensen MH, Kadanoff LP, Procaccia I, Shraiman BI (1986) Fractal measures and their singularities: The characterization of strange sets. Phys Rev A 33:1141–1151

    Article  Google Scholar 

  • Hastings HM, Sugihara G (1993) Fractals: A Users's Guide for the Natural Sciences. Oxford University Press, New York

    Google Scholar 

  • Hirabayashi T, Ito K, Yoshii T (1992) Multifractal analysis of earthquakes. PAGEOPH 138:591–610

    Article  Google Scholar 

  • Hirata T, Imoto M (1991) Multi-fractal analysis of spatial distribution of microearthquakes in the Kanto-region. Geophys J Intl 107:155–162

    Article  Google Scholar 

  • Hiura H, Fukuoka H (1994) Fractal distribution characteristics of Landslides in Hokkaido isl., Shikoku isl. and Tohoku district. East Asia Symposium and Field Workshop on Landslides and Debris Flow: 35–43

  • Hong SZ, Hong SM (1994) An amendment to the fundamental limits on dimension calculations. Fractals 2:123–125

    Article  Google Scholar 

  • Hooge C, Lovejoy S, Schertzer D, Pecknold S, Malouin JF, Schmitt F (1994) Multifractal phase transitions: the origin of self-organized criticality in earthquakes. Nonlinear Processes in Geophysics 1:191–197

    Article  Google Scholar 

  • Ito K (1992) Towards a new view of earthquake phenomena. PAGEOPH 138:531–548

    Article  Google Scholar 

  • McCauley JL (1993) Chaos, Dynamics and Fractals: An Algorithmic Approach to Deterministic Chaos. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pawelzik K, Schuster HG (1987) Generalized dimensions and entropies from measured time series. Phys Rev A 35:481–484

    Article  Google Scholar 

  • Peitgen HO, Saupe D (1988) The Science of Fractal Images. Springer-Verlag, Heidelberg

    Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in C, Cambridge University Press, Cambridge

    Google Scholar 

  • Provenzale A, Villone B, Babiano A, Vio R (1993) Intermittency, phase randomization and generalized fractal dimensions. Int Jour of Bifurcation and Chaos 3:729–736

    Article  Google Scholar 

  • Ramsey JB, Yuan HJ (1990) The statistical properties of dimension calculations using small data sets. Nonlinearity 3:155–176

    Article  Google Scholar 

  • Russ JC (1994) Fractal Surfaces. Plenum Press, New York

    Book  Google Scholar 

  • Segre E, Deangeli C (1995) Cellular automaton for realistic modelling of landslides to appear in: Nonlinear Processes in Geophysics

  • Scheidegger AE (1991) Theoretical Geomorphology. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Schertzer D, Lovejoy S (1993) Nonlinear variability in geophysics: Scaling and multifractal processes. AGU Chapman/EGS Richardson Memorial Conference, Lecture Notes

  • Schuster HG (1988) Deterministic Chaos. VCH Publishers, Weinheim

    Google Scholar 

  • Suzuki M, Asakawa T, Kobashi S (1988) Examination of critical rainfall for landslides with rain fall radar information. The case of typhoon No. 10, 1983 attack to Hyogo and Kyoto prefecture, Japan. Proc Ann Conf of Erosion Control Society, Japan: 81–84 (in Japanese)

  • Takahashi T (1991) Debris Flow. IAHR Monograph, Belkema, Rotterdam

  • Takayasu H (1990) Fractals in the physical sciences. Manchester University Press, Manchester

    Google Scholar 

  • Vicsek T (1992) Fractal Growth Phenomena. 2nd ed., World Scientific Publishing Co., Singapore

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goltz, C. Multifractal and entropic properties of landslides in Japan. Geol Rundsch 85, 71–84 (1996). https://doi.org/10.1007/BF00192063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00192063

Key words

Navigation