, Volume 3, Issue 2, pp 65–72 | Cite as

Biochemical symptoms of stress in the mycorrhizal roots of Norway spruce (Picea abies)

  • W. Pankow
  • M. Niederer
  • U. Wieser
  • B. Schmid
  • T. Boller
  • A. Wiemken
Original Articles


The mycorrhizal activity of spruce in a mixed-wood forest was monitored over 1 year by measuring biochemical characters in fine roots of six canopy trees and of a regrowth stand. The concentration of adenosine 5′-triphosphate (ATP), a measure of living biomass, showed two peaks per year, one at bud break and one after main shoot growth. The concentration of storage polysaccharides in mycorrhizae showed the same cycles even more pronouncedly. It is proposed that these changes reflect growth and senescence of mycorrhizae and that the timing of the cycles is controlled by translocation of assimilates from the shoot. Differences between mycorrhizae collected from canopy trees and the regrowth stand were small and not significant. Characters known to be related to fungal activity of the mycorrhizal symbiosis (concentration of trehalose, glucose uptake, respiration) also varied little among the six canopy trees. Large differences among fine-root samples from different canopy trees, however, were detected in the concentrations of ATP and storage polysaccharides, measures which seemed to be physiologically integrated within trees. If low concentrations in roots precede losses of foliage from trees, these two symptoms could be used as early indicators of growth decline in individual spruce trees.

Key words

Picea abies Ectomycorrhizae Physiological ecology Forest decline 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beutler HO (1984) Starch. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 6, 3rd edn; Verlag Chemie, Weinheim, pp 2–10Google Scholar
  2. Cochran WG, Cox GM (1957) Experimental design, 2nd edn. Wiley, New YorkGoogle Scholar
  3. Cohen J (1977) Statistical power analysis for the behavioral sciences. Academic Press, New YorkGoogle Scholar
  4. Ericsson A, Persson H (1980) Seasonal changes in starch reserves and growth of fine roots of 20-year-old Scot's pines. Ecol Bull 32: 239–250Google Scholar
  5. Fairley RI, Alexander IJ (1985) Methods of calculating fine root production in forests. In: Fitter AH (ed) Ecological interactions in soil. Blackwell, Oxford, pp 37–42Google Scholar
  6. Göttsche D (1972) Verteilung von Feinwurzeln und Mycorrhizen im Bodenprofil eines Buchen- und eines Fichtenbestandes im Soiling. Mitt Bundesforschungsanst ForstHolzwirtschaft 88: 1–102Google Scholar
  7. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  8. Harper JL (1985) Modules, branches, and the capture of resources. In: Jackson JBC, Buss LW, Cook RE (eds) Population biology of clonal organisms. Yale University Press, New Haven, pp 1–33Google Scholar
  9. Haug I, Kottke I, Oberwinkler F (1986) Licht- und elektronenmikroskopische Untersuchungen von Mykorrhizen der Fichte (Picea abies (L.) Karst.) in Vertikalprofilen. Z Mykol 52: 373–391Google Scholar
  10. Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 5B. Academic Press, New York, pp 266–273Google Scholar
  11. Hottiger T, Boller T, Wiemken A (1987) Rapid changes of heat desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett 220: 113–115Google Scholar
  12. Keller T (1979) Der Einfluß langdauernder SO2-Begasung auf das Wurzelwachstum der Fichte. Schweiz Z Forstwes 130: 429–435Google Scholar
  13. Klaus R (1979) Quantitative DC-Analyse von Zuckern, Zukkersäuren und Polyalkoholen. Kontakte (Merck) 3: 24Google Scholar
  14. Köstler JN, Brückner E, Bibelriether H (eds) (1968) Die Wurzeln der Waldbäume. Parey, HamburgGoogle Scholar
  15. Kottke I, Agerer R (1983) Untersuchungen zur Bedeutung der Mykorrhiza in älteren Laub- und Nadelwaldbeständen des Südwestdeutschen Keuperberglandes. Mitt Verein Forstl Standortskd Forstpfl 30: 30–39Google Scholar
  16. Krüger KW, Trappe JM (1967) Food reserves and seasonal growth of Douglas-fir seedlings. For Sci 13: 192–202Google Scholar
  17. Lechowicz MJ (1987) Resource allocation by plants under air pollution stress: Implications for plant- pest-pathogen interactions. Bot Rev 53: 281–300Google Scholar
  18. Lewis DH, Harley JL (1965) Carbohydrate physiology of mycorrhizal roots of beech. I. Identity of endogenous sugars and utilization of exogenous sugars. New Phytol 64: 224–237Google Scholar
  19. Loach K, Little CHA (1973) Production, storage, and use of photosynthate during shoot elongation in balsam fir (Abies balsamea). Can J Bot 51: 1161–1168Google Scholar
  20. Lundin A (1984) Extraction and automatic luminometric assay of ATP, ADP and AMP. In: Kricka J, Stanley PE, Thorpe GHG, Whitehead TP (eds) Analytical applications of bioluminescence and chemiluminescence. Academic Press, London, pp 491–501Google Scholar
  21. Mahrer F (1987) Ergebnisse der terrestrischen Waldschadeninventur. Schweiz Z Forstwes 138: 1–20Google Scholar
  22. Marshall JD, Waring RH (1985) Predicting fine root production and turnover by monitoring root starch and soil temperature. Can J For Res 15: 791–800Google Scholar
  23. Meyer FH (1987) The ramification index, an indicator for damage to the fine-root system of declining forest. Forstwiss Centralbl 106: 84–92Google Scholar
  24. Oren R, Schulze ED, Werk KS, Meyer J, Schneider BU, Heilmeier H (1988) Performance of two Picea abies (L.) Karst. stands at different stages of decline. I. Carbon relations and stand growth. Oecologia 75: 25–37Google Scholar
  25. Payne CD (1985) The generalized linear interactive modelling system. NAG, OxfordGoogle Scholar
  26. Ritter T, Kottke I, Oberwinkler F (1986) Nachweis der Vitalität von Ektomykorrhizen. Biol unserer Zeit 16: 179–185PubMedGoogle Scholar
  27. Saglio PH, Raymond P, Pradet A (1983) Oxygen transport and root respiration of maize seedlings. A quantitative approach using the correlation between ATP/ADP and the respiration rate controlled by oxygen tension. Plant Physiol 72: 1035–1039Google Scholar
  28. Santantonio D (1978) Seasonal dynamics of fine roots in mature stands of Douglas-fir of different water regimes. A preliminary report. In: Riedacker A, Gagnaire-Michard J (eds) Proceedings IUFRO Symposium on root physiology and symbiosis. CNRF, Nancy-Champenoux, pp 190–203Google Scholar
  29. Schweers W, Meyer FH (1970) Einfluß der Mykorrhiza auf den Transport von Assimilaten in die Wurzel. Ber Dtsch Bot Ges 83: 109–119Google Scholar
  30. Schweizerischer Nationalfonds (ed) (1988) Waldschäden und Luftverschmutzung in der Schweiz. Die Forschungsschwerpunkte auf den Testflächen an der Lägeren, im Alptal und bei Davos. Nationales Forschungsprogramm 14+, BernGoogle Scholar
  31. Smith JL, Paul EA (1988) Use of an in situ labeling technique for the determination of seasonal 14C distribution in Ponderosa pine. Plant Soil 106: 221–229Google Scholar
  32. Snedecor GW, Cochran WG (1980) Statistical methods, 7th edn. Iowa State University Press, AmesGoogle Scholar
  33. Van den Driessche R (1978) Seasonal changes in root growth capacity and carbohydrates in red pine and white spruce nursery seedlings. In: Riedacker A, Gagnaire-Michard J (eds) Proceedings IUFRO Symposium on root physiology and symbiosis. CNRF, Nancy-Champenoux, pp 6–19Google Scholar
  34. Van Praag HJ, Sougnez-Remy S, Weissen F, Carletti G (1988) Root turnover in a beech and a spruce stand of the Belgian Ardennes. Plant Soil 105: 87–103Google Scholar
  35. Vogt KA, Vogt DJ, Moore EE, Littke W, Grier CC, Leney L (1985) Estimating Douglas-fir fine root biomass and production from living bark and starch Can J For Res 15: 177–179Google Scholar
  36. Vogt KA, Vogt DJ, Moore EE, Fatuga BA, Redlin MR, Edmonds RL (1987) Conifer and angiosperm fine-root biomass in relation to stand age and site productivity in Douglas-fir forests. J Ecol 75: 857–870Google Scholar
  37. Wieser U, Pankow W, Wiemken A (1986) The adenylate energy charge of vesicular-arbuscular mycorrhiza of onions (Allium cepa L.). J Plant Physiol 124: 181–186Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • W. Pankow
    • 1
  • M. Niederer
    • 1
  • U. Wieser
    • 1
  • B. Schmid
    • 1
  • T. Boller
    • 1
  • A. Wiemken
    • 1
  1. 1.Botany DepartmentUniversity of BaselBaselSwitzerland

Personalised recommendations