Skip to main content
Log in

Age-correlated changes and juvenile hormone III regulation of the syllable period specific responses of the L3 auditory interneurons in the cricket, Acheta domesticus

Journal of Comparative Physiology A Aims and scope Submit manuscript

Cite this article

Summary

  1. 1.

    L3 is an auditory interneuron in the prothoracic ganglion of the cricket, Acheta domesticus. The degree of syllable period (SP) specific decrement to model calling songs is age-specific in L3. In response to calling songs having 50 ms SPs, L3s in old females (23–28 days) exhibit less response decrement than those in young (4 days) females (Figs. 1, 2).

  2. 2.

    Two to 4 days after juvenile hormone III (JHIII) application to old females, L3s respond in a decrementing manner similar to those of young females. The changes in the SP selectivity of L3 by age and JHIII application, correlate well with changes that have been demonstrated to occur in the selectivity of phonotaxis under similar conditions (Fig. 3).

  3. 3.

    The threshold of L3 does not change with age, while changes in L3's decrement result from decreased excitation in old females in response to the first syllable of a chirp (Figs. 4, 5).

  4. 4.

    Injection of patterned current pulses (which reproduce the temporal pattern of the calling song) do not elicit decrement (Fig. 6).

  5. 5.

    Age-related changes in selectivity to SP of the calling song occurs above and below L3s threshold (Fig. 7).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

SP :

syllable period

References

  • Atkins G, Pollack GS (1987a) Response properties of prothoracic, interganglionic sound-activated interneurons in the cricket Teleogryllus oceaniens. J Comp Physiol A 161: 681–693

    Google Scholar 

  • Atkins G, Pollack GS (1987b) Correlations between structure, topographic arrangement and spectral sensitivity of sound-sensitive interneurons in crickets. J Comp Neurol 266: 398–412

    Google Scholar 

  • Atkins G, Ligman S, Burghardt F, Stout JF (1984) Changes in phonotaxis by the female cricket Acheta domesticus L. after killing identified acoustic interneurons. J Comp Physiol A 154: 795–804

    Google Scholar 

  • Atkins G, Chiba A, Atkins S, Stout J (1988) Low-pass filtering of sound signals by a high frequency brain neuron and its input in the cricket Acheta domesticus L. J Comp Physiol A 164: 269–276

    Google Scholar 

  • Atkins S, Atkins G, Rhodes M, Stout JF (1989) Influence of syllable period on song encoding properties of an ascending auditory interneuron in the cricket Acheta domesticus. J Comp Physiol A 165: 827–836

    Google Scholar 

  • Atkins G, Henley J, Handysides R, Stout J (1992) Evaluation of the behavioral roles of ascending auditory interneurons in calling song phonotaxis by the female cricket (Acheta domesticus). J Comp Physiol A 170: 363–372

    Google Scholar 

  • Boyan GS (1980) Auditory neurons in the brain of a cricket Gryllus bimaculatus (De Geer). J Comp Physiol 140: 81–93

    Google Scholar 

  • Boyan GS (1981) Two-tone suppression of an identified auditory neurone in the brain of the cricket Gryllus bimaculatus (De Geer). J Comp Physiol 144: 117–12

    Google Scholar 

  • Doherty JA (1985) Trade-off phenomena in calling song recognition and phonotaxis in the cricket, Gryllus bimaculatus (Orthoptera Gryllidae). J Comp Physiol A 156: 787–801

    Google Scholar 

  • Fielden A (1960) Transmission through the last abdominal ganglion of the dragonfly nymph, Anax Imperator. J Comp Exp Biol 37: 832–844

    Google Scholar 

  • Furukawa N, Tomioka K, Yamaguchi T (1983) Functional anatomy of the musculature and innervation of the neck and thorax of the cricket, Gryllus bimaculatus. Zool Mag 92: 371–385

    Google Scholar 

  • Hayes V (1991) Expression of nicotinic acetylcholine receptors in the auditory neuron of crickets — a possible role in the regulation of phonotaxis. M.S. Thesis, Andrews University, MI

    Google Scholar 

  • Hennig RM (1988) Ascending auditory interneurons in the cricket Teleogryllus commodus (Walker): comparative physiology and direct connections with afferents. J Comp Physiol A 163: 135–143

    CAS  PubMed  Google Scholar 

  • Koch PB, Hoffmann KH (1985) Juvenile hormone and reproduction in crickets. Gryllus bimaculatus DeGeer: corpus allatum activity (in vitro) in females during the adult life cycle. Physiol Entomol 10: 173–182

    Google Scholar 

  • Loher W, Schooley DA, Baker FC (1987) Influence of the ovaries on JH titer in Teleogryllus commodus. Insect Biochem 17: 1099–1102

    Google Scholar 

  • Moiseff A, Hoy R (1983) Sensitivity to ultrasound in an identified auditory neuron in the cricket: a possible link to phonotactic behavior. J Comp Physiol 152: 155–167

    Google Scholar 

  • Moiseff A, Pollack GS, Hoy RR (1978) Steering responses of flying crickets to sound and ultrasound: mate attraction and predator avoidance. Proc Natl Acad Sci USA 75: 4052–4056

    Google Scholar 

  • Pollack GS, Hoy R (1981) Phonotaxis to individual rhythmic components of a complex cricket calling song. J Comp Physiol 144: 367–373

    Google Scholar 

  • Popov AV, Markovich AM (1982) Auditory interneurons in the prothoracic ganglion of the cricket, Gryllus bimaculatus. II A high-frequency ascending neuron (HF1AN). J Comp Physiol 146: 351–359

    Google Scholar 

  • Popov AV, Shuvalov VF (1977) Phonotactic behavior of crickets. J Comp Physiol 119: 111–126

    Google Scholar 

  • Renucci M, Strambi C (1983) Juvenile hormone levels, vitellogenin and ovarian development in Acheta domesticus. Experientia 39: 618–620

    Google Scholar 

  • Sanes JR, Hildebrand JG (1976) Acetylcholine and its metabolic enzymes in developing antennal lobes of the moth Manduca sexta. Dev Biol 52: 105–120

    Google Scholar 

  • Sanes JR, Prescott DJ, Hildebrand JG (1977) Cholinergic neurochemical development of normal and deafferented antennal lobes during metamorphosis of the moth Manduca sexta. Dev Brain Res 119: 389–402

    Google Scholar 

  • Satelle DB (1980) Acetylcholine receptors of insects: Biochemical and physiological approaches. In: Ford MG, Usherwood PNR, Reay RC, Lunt GG (eds) Neuropharmacology and neurobiology, Ellis Horwood, Chichester, pp 445–497

    Google Scholar 

  • Schildberger K (1984) Temporal selectivity of identified auditory neurons in the cricket brain. J Comp Physiol A 155: 171–185

    Google Scholar 

  • Stewart WW (1978) Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell 14: 741–759

    Google Scholar 

  • Stewart WW (1981) Lucifer dyes — highly fluorescent dyes for biological tracing. Nature 292: 17–21

    Google Scholar 

  • Stout JF, McGhee RW (1988) Attractiveness of the male Acheta domesticus calling song to females. II. The relative importance of syllable period, intensity and chirp rate. J Comp Physiol A 164: 277–287

    Google Scholar 

  • Stout JF, DeHaan CH, McGhee RW (1983) Attractiveness of the male Acheta domesticus calling song to females. I. Dependence on each of the calling song features. J Comp Physiol 153: 509–521

    Google Scholar 

  • Stout JF, Burghardt F, Atkins G (1985) The characterization and possible importance for phonotaxis of ‘L’-shaped ascending acoustic interneurons in the cricket Acheta domesticus. In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Parey, Berlin Hamburg, pp 89–100

    Google Scholar 

  • Stout JF, DeHaan CH, Hall JC, Rhodes M (1988) Processing of calling songs by a L-shaped neuron in the prothoracic ganglion of the female cricket, Acheta domesticus. Physiol Entomol 13: 89–101

    Google Scholar 

  • Stout J, Atkins G, Zacharias D (1991) Regulation of cricket phonotaxis through hormonal control of the threshold of an identified auditory neuron. J Comp Physiol A 169: 765–772

    Google Scholar 

  • Thorson J, Weber T, Huber F (1982) Auditory behavior of the cricket. II. Simplicity of calling-song recognition in Gryllus, and anomalous phonotaxis at abnormal carrier frequencies. J Comp Physiol 146: 361–378

    Google Scholar 

  • Walikonis R, Schoun D, Zacharias D, Henley J, Coburn P, Stout J (1991) Attractiveness of the male Acheta domesticus calling song to females. III. The relation of age-correlated changes in syllable period recognition and phonotactic threshold to juvenile hormone III biosynthesis. J Comp Physiol A 169: 751–764

    Google Scholar 

  • Wennauer R, Kassel L, Hoffmann KH (1989) The effects of juvenile hormone, 20-hydroxyecdysone, precocene II, and ovariectomy on the activity of the corpora allata (in vitro) in adult female Gryllus bimaculatus. J Insect Physiol 35: 299–304

    Google Scholar 

  • Wohlers D, Huber F (1982) Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket, Gryllus campestris L. J Comp Physiol 146: 161–173

    Google Scholar 

  • Wohlers D, Huber F (1985) Topographical organization of the auditory pathway within the prothoracic ganglion of the cricket Gryllus campestris L. Cell Tissue Res 239: 555–56

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Henley, J., Greenwood, J., Stout, J. et al. Age-correlated changes and juvenile hormone III regulation of the syllable period specific responses of the L3 auditory interneurons in the cricket, Acheta domesticus . J Comp Physiol A 170, 373–378 (1992). https://doi.org/10.1007/BF00191426

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00191426

Key words

Navigation