Skip to main content
Log in

Plasma transport across the heliopause

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Existing heliopause models are critically rediscussed under the new aspect of possible plasma mixing between the solar wind and the ambient ionized component of the local interstellar medium (LISM). Based on current kinetic plasma theories, effective diffusion rates across the heliopause are evaluated for several models with turbulence caused by electrostatic or electromagnetic interactions that could be envisaged in this context. Some specific cases that may lead to high diffusion rates are investigated, especially in regard to their LISM magnetic field dependence.

For weak fields (less than 10−7 G), macroscopic hydrodynamic instabilities, such as of Rayleigh-Taylor or Kelvin-Helmholtz-types, can be excited. The resulting plasma mixing rates at the heliopause may amount to 20–30% of the impinging mass flow.

Recently, an unconventional new approach to the problem for the case of tangential magnetic fields at the heliopause was published in which a continuous change of the plasma properties within an extended boundary layer is described by a complete set of two-fluid plasma equations including a hybrid MHD-formulation of wave-particle interaction effects. If a neutral sheet is assumed to exist within the boundary layer, the magnetic field direction is proven to be constant for a plane-parallel geometry. Considering the electric fields and currents in the layer, an interesting relationship between the field-reconnection probability and the electric conductivity can be derived, permitting a quantitative determination of either of these quantities.

An actual value for the electrical conductivity is derived here on the basis of electron distribution functions given by a superposition of Maxwellians with different temperatures. Using two-stream instability theory and retaining only the most unstable modes, an exact solution for the density, velocity, and magnetic and electric fields can be obtained. The electrical conductivity is then shown to be six orders of magnitude lower than calculated by conventional formulas. Interestingly, this leads to an acceptable value of 0.1 for the reconnection coefficient.

By analogy with the case of planetary magnetopauses, it is shown here for LISM magnetic fields of the order of 10−6 G or larger that field reconnection processes may also play an important role for the plasma mixing at the heliopause. The resulting plasma mixing rate is estimated to amount to an average value of 10% of the incident mass flow. It is suggested here that the dependence of the cosmic-ray penetration into the heliosphere on the distribution of reconnecting areas at the heliopause may provide a means of deriving the strength and orientation of the LISM field.

A series of observational implications for the expected plasma mixing at the heliopause is discussed in the last part of the paper. In particular, consequences are discussed for the generation of radio noise at the heliopause, for the penetration of LISM neutrals into the heliosphere, for the propagation of cosmic rays towards the inner part of the solar system and for convective electric field mergings into the heliosphere during the course of the solar cycle, depending on the solar cycle variations. With concern to a recent detection of electrostatic plasma waves by plasma receivers on Voyagers 1 and 2, we come to an interesting alternate explanation: the heliopause, rather than the heliospheric shock front, could be responsible for the generation of these waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akasofu, S. I. and Covey, D. N.: 1981, Planetary Space Sci. 29, 313.

    Google Scholar 

  • Axford, W. I.: 1972, Solar Wind II, NASA SPR-308.

  • Bame, S. J., Anderson, R. C., Asbridge, J. R., Baker, D. N., Feldman, W. C., Gosling, J. T., Hones, E. W., Jr., McComas, D. J., and Zwickl, R. D.: 1983, Geophys. Res. Letters 10, 912.

    Google Scholar 

  • Baranov, V. B., Krasnobaev, K. V., and Ruderman, M. S.: 1976, Astrophys. Space Sci. 41, 491.

    Google Scholar 

  • Baranov, V. B., Lebedev, M. G., and Ruderman, M. S.: 1979, Astrophys. Space Sci. 66, 441.

    Google Scholar 

  • Berchem, J. and Russell, C. T.: 1984, J. Geophys. Res. 89, 6689.

    Google Scholar 

  • Bertaux, J. L.: 1984, in Y. Kondo, F. C. Bruhweiler, and B. D. Savage (eds.), ‘Local Interstellar Medium’, IAU Colloq. 81, 3.

  • Braginski, S. I.: 1957, Soviet Phys. 6, 358.

    Google Scholar 

  • Burlaga, L. F.: 1984, Space Sci. Rev. 39, 255.

    Google Scholar 

  • Burlaga, L. F., Klein, L. W., Lepping, R. P., and Behannon, K. W.: 1984, J. Geophys. Res. 89, 10659.

    Google Scholar 

  • Burlaga, L. F., Lepping, R. P., Behannon, K. W., Klein, L. W., and Neubauer, F. M.: 1982, J. Geophys. Res. 87, 4345.

    Google Scholar 

  • Burlaga, L. F., Schwenn, R., and Rosenbauer, H.: 1983, Geophys. Res. Letters 10, 413.

    Google Scholar 

  • Chandrasekhar, S.: 1961, Hydrodynamic and Hydromagnetic Stability, Dover Publ. Inc., New York.

    Google Scholar 

  • Coleman, P. J., Jr.: 1976, in E. W. Greenstadt, M. Dryer, and D. S. Intriligator (eds.), Exploration of the Outer Solar System, American Institute of Aeronautics and Astronautics, New York, p. 3.

    Google Scholar 

  • Cowley, S. W. H.: 1982, Rev. Geophys. Space Phys. 20, 531.

    Google Scholar 

  • Crooker, N. U.: 1979, J. Geophys. Res. 84, 951.

    Google Scholar 

  • Crooker, N. U.: 1982, Solar Wind V, Proc. Conf. Woodstock, Vermont, p. 303.

  • Cummings, A. C., Stone, E. C., and Webber, W. R.: 1984, Astrophys. J. 287, L99.

    Google Scholar 

  • Davidson, L. R.: 1984, in A. A. Galeev and R. Sudan (eds.), Osnovy Fiziki Plasmy, Vol. 1, Energoatomizdat, Moscow, p. 443.

    Google Scholar 

  • Davidson, R. C., Krall, N. A., Papadopoulos, I., and Shanny, R.: 1969, Phys. Rev. Letters 24, 579.

    Google Scholar 

  • Fahr, H. J. and Neutsch, W.: 1982a, Astron. Astrophys. 118, 57.

    Google Scholar 

  • Fahr, H. J. and Neutsch, W.: 1982b, Monthly Notices Roy. Astron. Soc. 205, 839.

    Google Scholar 

  • Fahr, H. J. and Ripken, H. W.: 1984, Astron. Astrophys. 139, 551.

    Google Scholar 

  • Fahr, H. J. and Ripken, H. W.: 1985, ‘The Heliospheric Plasma Interface for Different LISM Phases’, Astron. Astrophys. (submitted).

  • Fahr, H. J., Grzedzielski, S., and Ratkiewicz-Landowska, R.: 1985, in preparation.

  • Fahr, H. J., Petelski, E. F., and Ripken, H. W.: 1978, Solar Wind IV, NASA-SPR W-100-81-31, 543.

  • Fejer, J. A.: 1964, J. Geophys. Res. 69, 123.

    Google Scholar 

  • Fejer, J. A.: 1965, J. Geophys. Res. 70, 4972.

    Google Scholar 

  • Feldman, W. C.: 1981, Solar Wind IV, Proc. Burghausen, Springer-Verlag, Berlin, Heidelberg, New York, p. 217.

    Google Scholar 

  • Feldman, W. C., Asbridge, J. R., Bame, S. J., Fenimore, E. E., and Gosling, J. T.: 1981, J. Geophys. Res. 86, 5408.

    Google Scholar 

  • Fisk, L. A.: 1976, J. Geophys. Res. 81, 4646.

    Google Scholar 

  • Galeev, A. A.: 1978, Phys. Fluids 21, 1353.

    Google Scholar 

  • Galeev, A. A.: 1983, Space Sci. Rev. 34, 213.

    Google Scholar 

  • Galeev, A. A. and Sagdeev, R.: 1984, in A. A. Galeev and R. Sudan (eds.), Osnovy Fiziki Plasmy, Complement to Vol. 2, Energoatomizdat, Moscow, 1984, p. 5.

    Google Scholar 

  • Gladd, N. T. and Horton, W., Jr.: 1973, Phys. Fluids 16, 879.

    Google Scholar 

  • Grzedzielski, S. and Macek, W.: 1984, J. Geophys. Res. 89, 2369.

    Google Scholar 

  • Grzedzielski, S., Macek, W., and Ziemkiewicz, J.: 1986, to appear.

  • Grzedzielski, S., Macek, W., and Oberc, P.: 1981, Nature 292, 615.

    Google Scholar 

  • Grzedzielski, S., Macek, W., and Oberc, P.: 1982, Astra Astron. 32, 309.

    Google Scholar 

  • Heyn, M. F., Biernat, K., Semenov, V. S., and Kubyshkin, I. V.: 1985, J. Geophys. Res. 90, 1781.

    Google Scholar 

  • Horton, V.: 1984, in A. A. Galeev and R. Sudan (eds.), Osnovy Fiziki Plasmy, Vol. 2, Energoatomizdat, 1984, p. 363.

  • Hundhausen, A. J.: 1979, Rev. Geophys. Space Phys. 17, 2034.

    Google Scholar 

  • Kadomtsev, B. B.: 1965, Plasma Turbulence, Academic Press, New York.

    Google Scholar 

  • Kayser, S. E., Barnes, A., and Mihalov, J. O.: 1984, Astrophys. J. 285, 339.

    Google Scholar 

  • Kurth, W. S., Gurnett, D. A., Scarf, F. W., and Poynter, R. L.: 1984, Nature 312, 27.

    Google Scholar 

  • Kurth, W. S., Sullivan, J. D., Gurnett, D. A., Scarf, F. L., Bridge, H. S., and Sittler, E. C., Jr.: 1982, J. Geophys. Res. 87, 10373.

    Google Scholar 

  • Landau, L. D. and Lifshitz, E. M.: 1963, Electrodynamics of Continuous Media, Pergamon Press, Oxford, Chapter VIII.

    Google Scholar 

  • Lanzerotti, L. J. and Maclennan, C. G.: 1985, Nature 316, 243.

    Google Scholar 

  • Lee, L. C.: 1982, Geophys. Res. Letters 9, 1159.

    Google Scholar 

  • Lee, L. C. and Roederer, J. G.: 1982, J. Geophys. Res. 87, 1439.

    Google Scholar 

  • Lepping, R. P., Burlaga, L. F., Desch, M. D., and Klein, L. W.: 1982, Geophys. Res. Letters 9, 885.

    Google Scholar 

  • Lerche, I.: 1966, J. Geophys. Res. 71, 2365.

    Google Scholar 

  • Liu, C. S., Rosenbluth, M. N., and Horton, C. W., Jr.: 1972, Phys. Rev. Letters 29, 1489.

    Google Scholar 

  • Luhmann, J. G., Walker, R. J., Russell, C. T., Crooker, N. U., Spreiter, J. R., and Stahara, S. S.: 1984a, J. Geophys. Res. 89, 1739.

    Google Scholar 

  • Luhmann, J. G., Walker, R. J., Russell, C. T., Spreiter, J. R., Stahara, S. S., and Williams, D. J.: 1984b, J. Geophys. Res. 89, 6829.

    Google Scholar 

  • Macek, W. and Grzedzielski, S.: 1984, in B. McNamara (ed.), ‘Radiation in Plasmas’, Proc. Int. Centre Theoret. Phys., Trieste, Vol. 2, p. 706, World Scientific, Philadelphia, Singapore.

    Google Scholar 

  • Macek, W. and Grzedzielski, S.: 1985, in B. McNamara (ed.), Twenty Years of Plasma Physics, World Scientific, Philadelphia, p. 320.

    Google Scholar 

  • Macek, W. and Grzedzielski, S.: 1986, in W. Grossman (ed.), Proc. Int. Centre Theoret. Phys., Trieste (in press).

  • McDonald, F. B., Lal, N., Trainor, J. H., Van Hollebeke, M. A. I., and Webber, W. R.: 1981, Astrophys. J. 249, L71.

    Google Scholar 

  • Miura, A.: 1982, Phys. Rev. Letters 49, 779.

    Google Scholar 

  • Miura, A.: 1984, J. Geophys. Res. 89, 801.

    Google Scholar 

  • Miura, A., and Pritchett, P. L.: 1982, J. Geophys. Res. 87, 7431.

    Google Scholar 

  • Neutsch, W. and Fahr, H. J.: 1983, Monthly Notices Roy. Astron. Soc. 202, 735.

    Google Scholar 

  • Olson, W. P. and Pfitzer, K. A.: 1984, J. Geophys. Res. 89, 7347.

    Google Scholar 

  • Papadopoulos, K.: 1977, Rev. Geophys. Space Phys. 15, 113.

    Google Scholar 

  • Parker, E. N. 1958, Phys. Fluids 1, 171.

    Google Scholar 

  • Parker, E. N. 1963, in Interplanetary Dynamical Processes, Interscience, New York.

    Google Scholar 

  • Parker, E. N. 1967a, J. Geophys. Res. 72, 2315.

    Google Scholar 

  • Parker, E. N. 1967b, J. Geophys. Res. 72, 4365.

    Google Scholar 

  • Parker, E. N. 1977, Astrophys. J. 215, 370.

    Google Scholar 

  • Parker, E. N. 1979, Cosmical Magnetic Fields, Clarendon Press, Oxford, p. 392ff.

    Google Scholar 

  • Paschmann, G., Sonnerup, B. U. Ö., Papamastorakis, I., Sckopke, N., Haerendel, G., Bame, S. J., Asbridge, J. B., Gosling, J. T., Russell, C. T., and Elphic, R. C.: 1979, Nature 282, 243.

    Google Scholar 

  • Pilipp, W. G.: 1983, Solar Wind V, NASA SPR-2280, p. 413.

  • Ratkiewicz-Landowska, R. and Grzedzielski, S.: 1984, Artif. Satell. 19, No. 2.

    Google Scholar 

  • Ratkiewicz-Landowska, R., Fahr, H. J., and Grzedzielski, S.: 1985, in preparation.

  • Ripken, H. W. and Fahr, H. J.: 1983, Astron. Astrophys. 122, 181.

    Google Scholar 

  • Robertson, C., Cowley, S. W. H., and Dungey, J. W.: 1981, Planetary Space Sci. 29, 399.

    Google Scholar 

  • Russell, C. T. and Elphic, R. C.: 1979, Geophys. Res. Letters 6, 33.

    Google Scholar 

  • Schlüter, A.: 1950, Z. Naturforsch. 5, 72.

    Google Scholar 

  • Scudder, J.: 1984, J. Geophys. Res. 89, 7431.

    Google Scholar 

  • Sen, A. K.: 1965, Planetary Space Sci. 13, 131.

    Google Scholar 

  • Slavin, J. A., Tsurutani, B. T., Smith, E. J., Jones, D. E., and Sibeck, D. G.: 1983, Geophys. Res. Letters 10, 973.

    Google Scholar 

  • Smith, E. J. and Barnes, A.: 1982, Solar Wind V, Proc. of a Conference, Woodstock, Vermont, p. 521.

  • Smith, P. R.: 1984, Planetary Space Sci. 32, 1147.

    Google Scholar 

  • Smith, P. R., Cowley, S. W. H., and Dungey, J. W.: 1984, Planetary Space Sci. 32, 1135.

    Google Scholar 

  • Sonnerup, B. U. Ö.: 1970, J. Plasma Phys. 4, 161.

    Google Scholar 

  • Sonnerup, B. U. Ö. and Ledley, B. G.: 1974, J. Geophys. Res. 79, 4309.

    Google Scholar 

  • Sonnerup, B. U. Ö., Paschmann, G., Papamastorakis, I., Sckopke, N., Haerendel, G., Bame, S. J., Asbridge, J. R., Gosling, J. T., and Russell, C. T.: 1981, J. Geophys. Res. 86, 10049.

    Google Scholar 

  • Spitzer, L. 1956, Physics of Fully Ionized Gases, Interscience, New York.

    Google Scholar 

  • Tange, T. and Ichimaru, S.: 1974, J. Phys. Soc. Japan 36, 1437.

    Google Scholar 

  • Tritakis, V. P.: 1984, J. Geophys. Res. 89, 6588.

    Google Scholar 

  • Vlasov, V. I.: 1983, Geomagnetizm i Aeronomiya 23, 475.

    Google Scholar 

  • Whittaker, E. T. and Watson, G. N.: 1927, Modern Analysis, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Willis, D. M.: 1971, Rev. Geophys. Space Phys. 9, 953.

    Google Scholar 

  • Winterhalter, D., Kivelson, M. G., Russell, C. T., and Smith, E. J.: 1981, Geophys. Res. Letters 8, 911.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahr, H.J., Neutsch, W., Grzedzielski, S. et al. Plasma transport across the heliopause. Space Sci Rev 43, 329–381 (1986). https://doi.org/10.1007/BF00190639

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00190639

Keywords

Navigation