Skip to main content
Log in

Connections of the basal telencephalic areas c and d in the turtle brain

  • Original Articles
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

Tracer substances were injected into the basal telencephalic areas c and d of the turtle brain. These areas (Acd) have recently been shown to be connected reciprocally with the dorsal spino-medullary region, though the particular subregions involved in these projections remained unclear. We demonstrated that the efferent projections of area d terminate predominantly within or immediately adjacent to the trigeminal nuclear complex and in the high cervical spinal gray. The dendritic domain of the vagus-solitarius complex and the dorsal column nuclear complex might also receive some basal telencephalic efferents. The afferent projections to Acd, on the other hand, arise predominantly in the dorsal column nuclei as defined according to cytoarchitectural and hodological criteria. A few retrogradely labeled cells were found in the vagus-solitarius complex, the principal trigeminal nucleus and the high cervical spinal cord. Numerous labeled cells were found in the dorsolateral isthmo-rhombencephalic tegmentum, especially the n. visceralis secundarius, the n. vestibularis superior and parts of the lateral lemniscal complex. Aminergic cell populations projecting to Acd were the n. raphes inferior and superior, the locus coeruleus, the substantia nigra, pars compacta and the ventral tegmental area. Other meso-diencephalic cell groups were the griseum centrale (including the n. laminaris of the torus semicircularis), the n. interpeduncularis dorsalis, the nucleus of the fasciculus longitudinalis medialis, the nucleus and the nucleus interstitialis of flm, the n. interstitialis commissuralis posterior and then n. caudalis. Several hypothalamic regions, the reuniens complex and the perirotundal region of the thalamus also appeared to project heavily to Acd. Telencephalic areas retrogradely labeled after injection of tracer into Acd and its immediate surroundings were the rostral part of the lateral (olfactory) cortex, adjacent regions of the basal dorsal ventricular ridge and the n. centralis amygdalae, the n. tractus olfactorius lateralis as well as the areas g and h. The data suggest that areas c and d may correlate best with the ‘extended’ amygdala in mammals; further correlation with structures similar to the ventral striopallidum, however, cannot be excluded. Homostrategies are discussed with regard to the processing of higher-order somatovisceral information in turtles, birds and mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Acb:

n. accumbens

Acd:

area c and area d

ADVR:

anterior dorsal ventricular ridge

AmyE:

extended amygdala

ASt:

archistriatum

Bas:

n. basalis

BDVR:

basal dorsal ventricular ridge

BStT:

bed nucleus of the stria terminalis

c:

area “c”

CA:

n. centralis amygdalae

Cbl:

cerebellum

CblN:

cerebellar nuclei

cc:

central canal

Cd:

n. caudalis

CoC:

cochlear nuclear complex

Col:

colliculus inferior

CxD:

dorsal cortex

CxL:

lateral cortex

CxM:

medial cortex (in Fig. 9 motor cortex)

CxS:

sensory cortex

d:

area “d”

D:

area D of ADVR

DC:

dorsal column nuclear complex

DL:

n. dorsolateralis anterior thalami

DLP:

n. dorsolateralis posterior thalami

DM:

n. dorsomedialis anterior thalami

DSM:

dorsal spino-medullary region

DVR:

dorsal ventricular ridge

Fa:

n. nervi facialis

fbl:

lateral forebrain bundle

FLM:

n. of flm

g:

area “g”

GC:

griseum centrale

GL:

n. geniculatus lateralis

h:

area “h”

Hb:

habenula

Hg:

n. nervi hypoglossi

Hph:

hypophysis

HSC:

high cervical spinal cord

Hyli:

intermediate rostrocaudal and dorsoventral region of Hy

HyPv:

periventricular hypothalamus

HyVi:

intermediate rostrocaudal and ventral region of Hy

HyVc:

caudal and ventral region of Hy

ICP:

n. interstitialis commissuralis posterior

In:

n. interstitialis of flm

IpD:

n. interpeduncularis dorsalis

IpV:

n. interpeduncularis ventralis

IsM:

n. isthmi, p. magnocellularis

IsP:

n. isthmi, p. parvocellularis

L:

lateral subdivision of ADVR

la:

lateral ascending bundle

LCr:

locus coeruleus

LL:

n. lemniscus lateralis

LTh:

n. lenticularis thalami

MLd:

n. mesencephalicus lateralis, pars dorsalis

MGP:

medial geniculate/posterior nuclear complex

oc:

chiasma opticum

Om:

n. nervi oculomotorii

ot:

tractus opticus

OT:

optic tectum

OTg:

n. opticus tegmenti

Ov:

n. ovalis

Pbr:

parabrachial complex

PHAL:

Phaseolus vulgaris-leucoagglutinin

Pld:

pallidum

PlTh:

palliai thickening

PrM:

n. profundus mesencephali

PRo:

perirotundal complex

Ps:

Pseudemys scripta elegans

Ral:

n. raphes inferior

RaS:

n. raphes superior

Re:

n. reuniens

ReC:

Re and ReX

ReX:

region immediately lateral Re

RFI:

reticular formation, inferior field

RFM:

reticular formation, medial field

RFS:

reticular formation, superior field

Ro:

n. rotundus

Ru:

n. ruber

SGD:

spinal dorsal horn

SNC:

substantia nigra p. compacta

sol:

tractus solitarii

Sol:

n. tractus solitarii

SoVg:

solitarius-vagus nuclear complex

Str:

paleostriatum augmentatum

SuP:

n. suprapeduncularis

TOfL:

n. tractus olfactorii lateralis

TrC:

trigeminal nuclear complex

TrD:

n. descendons nervi trigemini

TrM:

n. motorius nervi trigemini

TrP:

n. principalis nervi trigemini

TrT:

area triangularis thalami

TSC, TS:

n. centralis

tvd:

dorsal telencephalic ventricular sulcus

tvv:

ventral telencephalic ventricular sulcus

VeC:

vestibular nuclear complex

VeDl:

n. vestibularis dorsolateralis

Vel:

n. vestibularis inferior/descendens

VeS:

n. vestibularis superior

VeVl:

n. vestibularis ventrolateralis

VgM:

n. motorius dorsalis, n. vagi

ViS:

n. visceralis secundarius

VTA:

ventral tegmental area

WGAH:

wheat germ agglutinin conjugated to HRP

References

  • Albanese A, Minciacchi D (1983) Organization of the ascending projections from the ventral tegmental area: a multiple fluorescent retrograde tracer study in the rat. J Comp Neurol 216:406–420

    Google Scholar 

  • Amaral DG, Price JL (1984) Amygdalo-cortical projections in the monkey (Macaca fascicularis). J Comp Neurol 230:465–496

    Google Scholar 

  • Arends JJA, Dubbeldam JL (1982) Exteroceptive and proprioceptive afferents of the trigeminal and facial motor nuclei in the mallard (Anas platyrhynchos L.). J Comp Neurol 209:313–329

    Google Scholar 

  • Arends JJA, Zeigler HP (1986) Anatomical identification of an auditory pathway from a nucleus of the lateral lemniscal system to the frontal telencephalon (nucleus basalis) of the pigeon. Brain Res 398:375–381

    Google Scholar 

  • Arends JJA, Wild JM, Zeigler HP (1988) Projections of the nucleus of the tractus solitarius in the pigeon (Columba livia). J Comp Neurol 278:405–429

    Google Scholar 

  • Balaban CD, Ulinski PS (1981) Organization of thalamic afferents to anterior dorsal ventricular ridge in turtles. I. Projections of thalamic nuclei. J Comp Neurol 200:95–130

    Google Scholar 

  • Bear MF, Ebner FF (1983) Somatostatin-like immunoreactivity in the forebrain of Pseudemys turtles. Neuroscience 9:297–308

    Google Scholar 

  • Beckstead RM, Domesick VB, Nauta WJH (1979) Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res 175:191–218

    Google Scholar 

  • Belekhova MG (1979) Neurophysiology of the forebrain. In: Gans C et al (eds) Biology of reptilia, vol 9. Academic Press, London, pp 287–359

    Google Scholar 

  • Belekhova MG, Zharskaja VD, Khachunts AS, Gaidaenko GV, Tumanova NL (1985) Connections of the mesencephalic, thalamic and telencephalic auditory centers in turtles. Some structural bases for audio-somatic interrelations. J Hirnforsch 26:127–152

    Google Scholar 

  • Berk LM (1987) Projections of the lateral hypothalamus and bed nucleus of the stria terminalis to the dorsal vagal complex in the pigeon. J Comp Neurol 260:140–156

    Google Scholar 

  • Bernard JF, Alden M, Besson JM (1993) The organization of the efferent projections from the pontine parabrachial area to the amygdaloid complex — a Phaseolus-vulgaris leucoagglutinin (PHA-I) study in the rat. J Comp Neurol 329:201–229

    Google Scholar 

  • Brauth SE (1988) The organization and projections of the paleostriatal complex of Caiman crocodilus. In: Schwerdtfeger WK, Smeets WJAJ (eds) The forebrain of reptiles. Karger, Basel, pp 60–76

    Google Scholar 

  • Brauth SE, Kitt CA (1980) The paleostriatal system of Caiman crocodilus. J Comp Neurol 189:437–465

    Google Scholar 

  • Brauth SE, Reiner A (1991) Calcitonin gene-related peptide is an evolutionarily conserved marker within the amniote thalamotelencephalic auditory pathway. J Comp Neurol 313:227–240

    Google Scholar 

  • Brauth SE, Reiner A, Kitt CA, Karten HJ (1983) The substance P-containing striatotegmental path in reptiles: an immunohistochemical study. J Comp Neurol 219:305–327

    Google Scholar 

  • Cliffer KD, Burstein R, Giesler GJ (1991) Distributions of spinothalamic, spinohypothalamic, and spinotelencephalic fibers revealed by anterograde transport of PHA-L in rats. J Neurosci 11:852–869

    Google Scholar 

  • Contestabile A, DiPardo A (1976) Enzymatic patterns in the reptilian brain. Histochemical characterization of the telencephalon. Monit Zool Ital 10:315–332

    Google Scholar 

  • Cruce WLR, Nieuwenhuys R (1974) The cell masses in the brain stem of the turtle Testudo hermanni; a topographical and topological analysis. J Comp Neurol 156:277–306

    Google Scholar 

  • Danielsen EH, Magnuson DJ, Gray TS (1989) The central amygdaloid nucleus innervation of the dorsal vagal complex in the rat: a Phaseolus vulgaris leucoagglutinin lectin anterograde tracing study. Brain Res Bull 22:705–717

    Google Scholar 

  • Desan PH (1988) Organization of the cerebral cortex in turtle. In: Schwerdtfeger WK, Smeets WJAJ (eds) The forebrain of reptiles. Karger, Basel, pp 1–11

    Google Scholar 

  • Donkelaar HJ ten, Boer-van-Huizen R de (1988) Brain stem afferents to the anterior dorsal ventricular ridge in a lizard (Varanus exanthematicus). Anat Embryol 177:465–475

    Google Scholar 

  • Donkelaar HJ ten, Nieuwenhuys R (1979) The brainstem of reptiles. In: Gans C et al (eds) Biology of reptilia, vol 9. Academic Press, London, pp 133–200

    Google Scholar 

  • Donkelaar HJ ten, Kusuma A, Boer-van-Huizen R de (1980) Cells of origin of pathways descending to the spinal cord in some quadrupedal reptiles. J Comp Neurol 192:827–851

    Google Scholar 

  • Dubbeldam JL, Visser AM (1987) The organization of the nucleus basalis-neostriatum complex of the mallard (Anas platyrhynchos L.) and its connections with the archistriatum and the paleostriatum complex. Neuroscience 21:487–518

    Google Scholar 

  • Dubbeldam JL, Brauch CSM, Don A (1981) Studies on the somatotopy of the trigeminal system in the mallard, Anas platyrhynchos L. III. Afferents and organization of the nucleus basalis. J Comp Neurol 196:391–405

    Google Scholar 

  • Durand SE, Tepper JM, Cheng MF (1992) The shell region of the nucleus-ovoidalis — a subdivision of the avian auditory thalamus. J Comp Neurol 323:495–518

    Google Scholar 

  • Dwivedi S, Rao PDP (1992) Cytoarchitectonic pattern of the hypothalamus in the turtle, Lissemys punctata granosa. Cell Tissue Res 270:173–188

    Google Scholar 

  • Follett KA (1989) A telencephalospinal projection in the Tegu lizard (Tupinambis teguixin). Brain Res 496:89–98

    Google Scholar 

  • Fuller TA, Russchen FT, Price JL (1987) Sources of presumptive glutamergic/aspartergic afferents to the rat ventral striatopallidal region. J Comp Neurol 258:317–338

    Google Scholar 

  • Fulwiler CE, Saper CB (1984) Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res Rev 7:229–260

    Google Scholar 

  • Garcia-Rill E (1991) The pedunculopontine nucleus. Prog Neurobiol 36:363–389

    Article  CAS  PubMed  Google Scholar 

  • Gomez DM, Newman SW (1992) Differential projections of the anterior and posterior regions of the medial amygdaloid nucleus of the Syrian hamster. J Comp Neurol 317:195–218

    Google Scholar 

  • Gonzalez A, Russchen FT, Lohman AHM (1990) Afferent connections of the striatum and the nucleus accumbens in the lizard Gekko gecko. Brain Behav Evol 36:39–58

    Google Scholar 

  • Groenewegen HJ, Becker NEHM, Lohman AHM (1980) Subcortical afferents of the nucleus accumbens septi in the cat, studied with retrograde axonal transport of horseradish peroxidase and bisbenzimid. Neuroscience 5:1903–1916

    Google Scholar 

  • Haber SN, Lynd-Balta E, Mitchell SJ (1993) The organization of the descending ventral pallidal projections in the monkey. J Comp Neurol 329:111–128

    Google Scholar 

  • Haberly LB (1985) Neuronal circuitry in olfactory cortex: anatomy and functional implications. Chem Senses 10:219–238

    Google Scholar 

  • Hall WS, Cohen PL, Brauth SE (1993) Auditory projections to the anterior telencephalon in the budgerigar (Melopsittacus undulatus). Brain Behav Evol 41:97–116

    Google Scholar 

  • Halsell CB (1992) Organization of parabrachial nucleus efferents to the thalamus and amygdala in the golden hamster. J Comp Neurol 317:57–78

    Google Scholar 

  • Heimer L, Alheid GF (1991) Piecing together the puzzle of basal forebrain anatomy. In: Napier TC, Kalivas PW, Hanin I (eds) The basal forebrain: anatomy to function. Plenum Press, New York, pp 1–42

    Google Scholar 

  • Heller SB, Ulinski PS (1987) Morphology of geniculo-cortical axons in turtles of the genera Pseudemys and Chrysemys. Anat Embryol 175:505–515

    Google Scholar 

  • Herbert H, Moga MM, Saper CB (1990) Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J Comp Neurol 293:540–580

    Google Scholar 

  • Holstege G (1991) Descending motor pathways and the spinal motor system: limbic and non-limbic components. Prog Brain Res 87:307–412

    Google Scholar 

  • Holstege G, Meiners L, Tan K (1985) Projections of the bed nucleus of the stria terminalis to the mesencephalon, pons, and medulla oblongata in the cat. Exp Brain Res 58:379–391

    Google Scholar 

  • Hoogland PV (1977) Efferent connections of the striatum in Tupinambis nigropunctatus. J Morphol 152:229–246

    Google Scholar 

  • Hoogland PV, Vermeulen-Vanderzee E (1989) Efferent connections of the dorsal cortex of the lizard Gekko gecko studied with Phaseolus vulgaris-Leucoagglutinin. J Comp Neurol 285:289–303

    Google Scholar 

  • Horst GJ ter, Boer P de, Luiten PGM, Willigen JD van (1989) Ascending projections from the solitary tract nucleus to the hypothalamus: a Phaseolus vulgaris lectin tracing study in the rat. Neuroscience 31:785–799

    Google Scholar 

  • Inagaki N, Panula P, Yamatodani A, Wada H (1990) Organization of the histaminergic system in the brain of the turtle Chinemys reevesii. J Comp Neurol 297:132–144

    Google Scholar 

  • Jackson A, Crossman AR (1983) Nucleus tegmenti pedunculopontinus: efferent connections with special reference to the basal ganglia, studied in the rat by anterograde and retrograde transport of horseradish peroxidase. Neuroscience 10:725–765

    Google Scholar 

  • Jayaraman A (1985) Organization of thalamic projections in the nucleus accumbens and the caudate nucleus in cats and its relation with hippocampal and other subcortical afferents. J Comp Neurol 231:396–420

    Google Scholar 

  • Johnston JB (1923) Further contributions to the study of the evolution of the forebrain. J Comp Neurol 35:337–481

    Google Scholar 

  • Kapp BS, Markgraf CG, Schwaber JS, Bilyk-Spafford T (1989) The organization of dorsal medullary projections to the central amygdaloid nucleus and parabrachial nuclei in the rabbit. Neuroscience 30:717–733

    Google Scholar 

  • Kelley AE, Domesick VB, Nauta WJH (1982) The amygdalostriatal projection in the rat — an anatomical study by anterograde and retrograde tracing methods. Neuroscience 7:615–630

    Google Scholar 

  • Kiehn O, Rostrup E, Moller M (1992) Monoaminergic systems in the brainstem and spinal cord of the turtle Pseudemys scripta elegans as revealed by antibodies against serotonin and tyrosine hydroxylase. J Comp Neurol 325:527–547

    Google Scholar 

  • Korzeniewska E, Güntürkün O (1990) Sensory properties and afferents of the M. dorsolateralis posterior thalami of the pigeon. J Comp Neurol 292:457–480

    Google Scholar 

  • Krubitzer LA, Kaas JH (1987) Thalamic connections of three representations of the body in somatosensory cortex of gray squirrels. J Comp Neurol 265:549–580

    Google Scholar 

  • Kudo M, Glendenning KK, Frost SB, Masterton RB (1986) Origin of mammalian thalamocortical projections. I. Telencephalic projections of the medial geniculate body in the opossum (Didelphis virginiana). J Comp Neurol 245:176–197

    Google Scholar 

  • Künzle H (1985) The cerebellar and vestibular nuclear complexes in the turtle. II. Projections to the prosencephalon. J Comp Neurol 242:122–133

    Google Scholar 

  • Künzle H, Siemen M (1993) The telencephalic areas c and d in the turtle: their interconnectivity with rhombencephalic regions and attempted correlations with subcortical areas in mammals. Ann Anat 175 [Suppl]:13

    Google Scholar 

  • Künzle H, Woodson W (1982) Meso-diencephalic and other target regions of ascending spinal projections in the turtle, Pseudemys scripta elegans. J Comp Neurol 212:349–364

    Google Scholar 

  • Künzle H, Woodson W (1983) Primary afferent projections to the spinal cord and the dorsal column nuclear complex in the turtle Pseudemys. Anat Embryol 166:229–245

    Google Scholar 

  • Kusunoki T (1971) The chemoarchitectonics of the turtle brain. Yokohama Med Bull 22:1–29

    Google Scholar 

  • LeDoux JE, Färb C, Ruggiero DA (1990) Topographic organization of neurons in the acoustic thalamus that project to the amygdala. J Neurosci 10:1043–1054

    Google Scholar 

  • Lee HJ, Rye DB, Hallanger AE, Levey AI, Wainer BH (1988) Cholinergic vs. noncholinergic efferents from the mesopontine tegmentum to the extrapyramidal motor system nuclei. J Comp Neurol 275:469–492

    Google Scholar 

  • Lohman AHM, Hoggland PV, Wijtes RJGM (1988) Projections from the main and accessory olfactory bulbs to the amygdaloid complex in the lizard Gekko gecko. In: Schwerdtfeger WK, Smeets WJAJ (eds) The forebrain of reptiles. Karger, Basel, pp 41–49

    Google Scholar 

  • Martin LJ, Powers RE, Dellovade TL, Price DL (1991) The bed nucleus-amygdala continuum in human and monkey. J Comp Neurol 309:445–485

    Google Scholar 

  • McDonald AJ (1991) Topographical organization of amygdaloid projections to the caudatoputamen, nucleus accumbens and related striatal-like areas of the rat brain. Neuroscience 44:15–35

    Google Scholar 

  • Medina L, Smeets WJAJ (1991) Comparative aspects of the basal ganglia-tectal pathways in reptiles. J Comp Neurol 308:614–630

    Google Scholar 

  • Mesulam MM (1978) Tetramethylbenzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26:106–117

    CAS  PubMed  Google Scholar 

  • Mizuno N, Takahashi O, Satoda T, Matsushima R (1985) Amydalospinal projections in the macaque monkey. Neurosci Lett 53:327–330

    Google Scholar 

  • Mori K, Nowycky MC, Shepherd GM (1981) Electrophysiological analysis of mitral cells in the isolated turtle olfactory bulb. J Physiol (Lond) 314:281–294

    Google Scholar 

  • Mufson EJ, Desan PH, Mesulam MM, Wainer BH, Levey AI (1984) Choline acetyltransferase-like immunoreactivity in the forebrain of the red-eared pond turtle (Pseudemys scripta elegans). Brain Res 323:103–108

    Google Scholar 

  • Nagata S (1986) The vestibulothalamic connections in the rat: a morphological analysis using wheat germ agglutinin-horseradish peroxidase. Brain Res 376:57–70

    Google Scholar 

  • Newman R, Winans SS (1980) An experimental study of the ventral striatum of the golden hamster. I. Neuronal connections of the nucleus accumbens. J Comp Neurol 191:167–192

    Google Scholar 

  • Northcutt RG (1970) The telencephalon of the Western painted turtle (Chrysemys picta belli). Ill Biol Monogr 43:1–113

    Google Scholar 

  • Olmos JS de (1990) Amygdala. In: Paxinos G (ed) The human nervous system. Academic Press, New York, pp 583–710

    Google Scholar 

  • Ottersen OP (1980) Afferent connections to the amygdaloid complex of the rat and cat. II. Afferents from the hypothalamus and the basic telencephalon. J Comp Neurol 194:267–289

    Google Scholar 

  • Ouimet CC, Patrick RL, Ebner FF (1985) The projection of three extrathalamic cell groups to the cerebral cortex of the turtle Pseudemys. J Comp Neurol 237:77–84

    Google Scholar 

  • Papez JW (1935) Thalamus of turtles and thalamic evolution. J Comp Neurol 61:433–475

    Google Scholar 

  • Parent A (1976) Striatal afferent connections in the turtle (Chrysemys picta) as revealed by retrograde axonal transport of horseradish peroxidase. Brain Res 108:25–36

    Google Scholar 

  • Parent A (1979) Monoaminergic systems of the brain. In: Gans C, Northcutt RG, Ulinski P (eds) Biology of reptilia, vol 9. Academic Press, London, pp 247–285

    Google Scholar 

  • Paton JA, Manogue KR, Nottebohm F (1981) Bilateral organization of the vocal contral pathway in the Budgeringar, Melopsittacus undulatus. J Neurosci 1:1279–1288

    Google Scholar 

  • Phillipson OT, Griffiths AC (1985) The topographic order of inputs to nucleus accumbens in the rat. Neuroscience 16:275–296

    Google Scholar 

  • Powers AS, Reiner A (1980) A stereotaxic atlas of the forebrain and midbrain of the eastern painted turtle (Chrysemys picta picta). J Hirnforsch 21:125–159

    Google Scholar 

  • Powers AS, Reiner A (1993) The distribution of cholinergic neurons in the central nervous system of turtles. Brain Behav Evol 41:326–345

    Google Scholar 

  • Pritz MB, Stritzel ME (1990) A different type of vertebrate thalamic organization. Brain Res 525:330–335

    Google Scholar 

  • Reiner A (1979) The paleostriatal complex in turtles. Soc Neurosci Abstr 5:466

    Google Scholar 

  • Reiner A (1987) The distribution of proenkephalin derived peptides in the central nervous system of turtles. J Comp Neurol 259:65–91

    Google Scholar 

  • Reiner A, Carraway RE (1987) Immunohistochemical and biochemical studies on lys(8)-asn(9)-neurotensin(8–13) [LANT6]-related peptides in the basal ganglia of pigeons, turtles and hamsters. J Comp Neurol 257:453–476

    Google Scholar 

  • Reiner A, Karten HJ (1985) Comparison of olfactory bulb projections in pigeons and turtles. Brain Behav Evol 27:11–27

    Google Scholar 

  • Reiner A, Brauth SE, Kitt CA, Karten HJ (1980) Basal ganglionic pathways to the tectum: studies in reptiles. J Comp Neurol 193:565–589

    Google Scholar 

  • Reiner A, Karten HJ, Solina AP (1983) Substance P: localization within the paleostriatal-tegmental pathway in the pigeon. Neuroscience 9:61–86

    Google Scholar 

  • Reiner A, Krause JE, Keyser KT, Eldred WD, McKelvy JF (1984a) The distribution of substance P in the turtle nervous system: a radioimmunoassay and immunohistochemical study. J Comp Neurol 226:50–75

    Google Scholar 

  • Reiner A, Brauth SE, Karten HJ (1984b) Evolution of the amniote basal ganglia. Trends Neurosci 7:320–325

    Google Scholar 

  • Riss W, Halpern M, Scalia F (1969) The quest for clues to forebrain evolution — the study of reptiles. Brain Behav Evol 2:1–50

    Google Scholar 

  • Russchen FT, Jonker AJ (1988) Efferent connections of the striatum and the nucleus accumbens in the lizard Gekko gecko. J Comp Neurol 276:61–80

    Google Scholar 

  • Russchen FT, Bakst I, Amaral DG, Price JL (1985) The amygdalostriatal projections in the monkey. An anterograde tracing study. Brain Res 329:241–258

    Google Scholar 

  • Sandrew BB, Edwards DL, Poletti CE, Foote WE (1986) Amygdalospinal projections in the cat. Brain Res 373:235–239

    Google Scholar 

  • Schall U, Güntürkün O, Delius JD (1986) Sensory projections to the nucleus basalis prosencephali of the pigeon. Cell Tissue Res 245:539–546

    Google Scholar 

  • Schlegel JR, Kriegstein AR (1987) Quantitative autoradiography of muscarinic and benzodiazepine receptors in the forebrain of the turtle, Pseudemys scripta. J Comp Neurol 265:521–529

    Google Scholar 

  • Siemen M, Künzle H (1994) Afferent and efferent connections of the dorsal column nuclear complex and adjacent regions in the turtle. J Brain Res 35:77–100

    Google Scholar 

  • Simon H, Moal M le, Calas A (1979) Efferents and afferents of the ventral tegmental-A 10 region studied after local injection of 3H-leucine and horseradish peroxidase. Brain Res 178:17–40

    Google Scholar 

  • Smeets WJAJ, Jonker A, Hoogland PV (1987) The distribution of dopamine in the forebrain and midbrain of the red-eared turtle Pseudemys scripta elegans reinvestigated using antibodies against dopamine. Brain Behav Evol 30:121–142

    Google Scholar 

  • Smeets WJAJ, Sevensma JJ, Jonker AJ (1990) Comparative analysis of vasotocin-like immunoreactivity in the brain of the turtle Pseudemys scripta elegans and the snake Python regius. Brain Behav Evol 35:65–85

    Google Scholar 

  • Steininger TL, Rye DB, Wainer BH (1992) Afferent projections to the cholinergic pedunculopontine tegmental nucleus and adjacent midbrain extrapyramidal area in the albino rat. 1. Retrograde tracing studies. J Comp Neurol 321:515–543

    Google Scholar 

  • Su HS, Bentivoglio M (1990) Thalamic midline cell populations projecting to the nucleus accumbens, amygdala and hippocampus in the rat. J Comp Neurol 297:582–594

    Google Scholar 

  • Turner BH, Herkenham M (1991) Thalamoamygdaloid projections in the rat — a test of the amygdala's role in sensory processing. J Comp Neurol 313:295–326

    Google Scholar 

  • Ueda S, Takeuchi Y, Sano Y (1983) Immunohistochemical demonstration of serotonin neurons in the central nervous system of the turtle (Clemmys japonica). Anat Embryol 168:1–20

    Google Scholar 

  • Ulinski PS (1983) Dorsal ventricular ridge: a treatise on forebrain organization in reptiles and birds. Wiley, New York

    Google Scholar 

  • Voneida TJ, Sligar CM (1979) Efferent projections of the dorsal ventricular ridge and the striatum in the Tegu lizard, Tupinambis nigropunctatus. J Comp Neurol 186:43–64

    Google Scholar 

  • Webster DMS, Rogers LJ, Pettigrew JD, Steeves JD (1990) Origins of descending spinal pathways in prehensile birds — do parrots have a homologue to the corticospinal tract of mammals. Brain Behav Evol 36:216–227

    Google Scholar 

  • Weindl A, Triepel J, Kuchling G (1984) Somatostatin in the brain of the turtle Testudo hermanni Gmelin. An immunohistochemical mapping study. Peptides 5 [Suppl 1]: 91–100

    Google Scholar 

  • Whitehead MC (1990) Subdivisions and neuron types of the nucleus of the solitary tract that project to the parabrachial nucleus in the hamster. J Comp Neurol 301:554–574

    Google Scholar 

  • Wild JM (1988) Vestibular projections to the thalamus of the pigeon: an anatomical study. J Comp Neurol 271:451–460

    Google Scholar 

  • Wild JM, Arends JJ, Zeigler HP (1984) A trigeminal sensorimotor circuit for pecking, grasping and feeding in the pigeon. Brain Res 300:146–151

    Google Scholar 

  • Wild JM, Arends JJA, Zeigler HP (1985) Telencephalic connections of the trigeminal system in the pigeon (Columba livia): a trigeminal sensorimotor circuit. J Comp Neurol 234:441–464

    Google Scholar 

  • Yamamoto K, Tohyama M, Shimizu N (1977) Comparative anatomy of the topography of catecholamine-containing neuron system in the brain stem from birds to teleosts. J Hirnforsch 18:229–240

    Google Scholar 

  • Yasui Y, Itoh K, Mizuno N (1987) Direct projections from the caudal spinal trigeminal nucleus to the striatum in the cat. Brain Res 408:334–338

    Google Scholar 

  • Zardetto-Smith AM, Gray TS (1990) Organization of peptidergic and catecholaminergic efferents from the nucleus of the solitary tract to the rat amygdala. Brain Res Bull 25:875–889

    Google Scholar 

  • Zeier H, Karten HJ (1971) The archistriatum of the pigeon: organization of afferent and efferent connections. Brain Res 31:313–326

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siemen, M., Künzle, H. Connections of the basal telencephalic areas c and d in the turtle brain. Anat Embryol 189, 339–359 (1994). https://doi.org/10.1007/BF00190590

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00190590

Key words

Navigation