Skip to main content
Log in

Effects of global density ratio on the centerline mixing behavior of axisymmetric turbulent jets

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Measurements, utilizing Rayleigh light scattering, of timeaveraged concentration and unmixedness have been made along the centerlines of axisymmetric turbulent jets formed from six pairs of jet and ambient gases. Jet to ambient density ratios range from 0.14 to 5.11. Findings are compared with predictions of an approx. similarity analysis and with extensive previous literature measurements. It is shown that virtual origins for plots of inverse time-averaged concentration are strongly dependent on global density ratio. Unmixedness values first grow with increasing distance from the jet source and then achieve an asymptote. The flow distance required to reach this asymptote is a strong function of density ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramovich, G. N. 1963: The theory of turbulent jets. Cambridge, MA: The MIT Press

    Google Scholar 

  • Arcoumanis, C. 1985: A laser Rayleigh scattering system for scalar transport studies. Exp. Fluids 3, 103–108

    Google Scholar 

  • Avery, J. F.; Faeth, G. M. 1975: Combustion of a submerged gaseous oxidizer jet in a liquid metal. In: Fifteenth Symposium (International) on Combustion, 501–512. Pittsburgh: The Combustion Institute

    Google Scholar 

  • Becker, H. A.; Hottel, H. C.; Williams, G. C. 1962: Mixing and flow in ducted turbulent jets. In: Ninth Symposium (International) on Combustion, 7–20. Pittsburgh: The Combustion Institute

    Google Scholar 

  • Becker, H. A.; Hottel, H. C.; Williams, G. C. 1967: The nozzle-fluid concentration field of the round, turbulent, free jet. J. Fluid Mech. 30, 285–303

    Google Scholar 

  • Becker, H. A.; Yamazaki, S. 1978: Entrainment, momentum flux and temperature in vertical free turbulent diffusion flames. Combust. Flame 33, 123–149

    Google Scholar 

  • Beer, J. M.; Chigier, N. A.; Lee, K. B. 1962: Modeling of double concentric burning jets. In: Ninth Symposium (International) on Combustion, 892–900. Pittsburgh: The Combustion Institute

    Google Scholar 

  • Birch, A. D.; Brown, D. R.; Dodson, M. G.; Thomas, J. R. 1978: The turbulent concentration field of a methane jet. J. Fluid Mech. 88, 431–449

    Google Scholar 

  • Birch, A. D.; Brown, D. R.; Dodson, M. G.; Swaffield, F. 1984: The structure and concentration decay of high pressure jets of natural gas. Combust. Science Technol. 36, 249–261

    Google Scholar 

  • Chassaing, P.; Claria, A. 1976: Transfert de masse dans des jets turbulents de revolution en milieu non homogene. Int. J. Heat Mass Transfer 19, 249–258

    Google Scholar 

  • Chen, C. J.; Rodi, W. 1980: Vertical turbulent buoyant jets — a review of experimental data. New York: Pergamon Press

    Google Scholar 

  • Chigier, N. A.; Beer, J. M. 1964: The flow region near the nozzle in double concentric jets. Trans. ASME, J. Basic Eng. 86, 797–804

    Google Scholar 

  • Corrsin, S.; Uberoi, M. S. 1949: Further experiments on the flow and heat transfer in a heated turbulent air jet. NACA TN-1865

  • Craya, A.; Curtet, R. 1955: Sur l'evolution d'un jet in espace confine. C. R. Hebd. Seances Acad. Sci. 241, 621–622

    Google Scholar 

  • Curtet, R. 1958: Confined jets and recirculation phenomena with cold air. Combust. Flame 2, 383–411

    Google Scholar 

  • Dahm, W. J. A. 1985: Experiments on entrainment, mixing, and chemical reactions in turbulent jets at large Schmidt number. PhD Diss., California Institute of Technology

  • Dahm, W. J. A.; Dibble, R. W. 1988: Coflowing turbulent jet diffusion flame blowout. In: Twenty-Second Symposium (International) on Combustion, 801–808. Pittsburgh: The Combustion Institute

    Google Scholar 

  • Dahm, W. J. A.; Dimotakis, P. E. 1987: Measurements of entrainment and mixing in turbulent jets. AIAA J. 25, 1216–1223

    Google Scholar 

  • Dowling, D. R. 1988: Mixing in gas phase turbulent jets. PhD Diss., California Institute of Technology

  • Dowling, D. R.; Dimotakis, P. E. 1988: On mixing and structure of the concentration field of turbulent jets. In: Proceedings of the first national fluid dynamics congress. Part 2, 982–988. Washington: American Institute of Aeronautics and Astronautics

    Google Scholar 

  • Dyer, T. M. 1979: Rayleigh scattering measurements of time-resolved concentration in a turbulent propane jet. AIAA J. 17, 912–914

    Google Scholar 

  • Ebrahimi, I.; Kleine, R. 1977: Konzentrationsfelder in isothermen Luft-Freistrahlen. Forsch. Ingenieurwes. 43, 25–30

    Google Scholar 

  • Gouldin, F. C.; Schefer, R. W.; Johnson, S. C.; Kollmann, W. 1986: Nonreacting turbulent mixing flows. Prog. Energy Combust. Sci. 12, 257–303

    Google Scholar 

  • Graham, S. C.; Grant, A. J.; Jones, J. M. 1974: Transient molecular concentration measurements in turbulent flows using Rayleigh light scattering. AIAA J. 12, 1140–1142

    Google Scholar 

  • Grandmaison, E. W; Rathgeber, D. E.; Becker, H. A. 1982: Some characteristics of concentration fluctuations in free turbulent jets. Can. J. Chem. Eng. 60, 212–219

    Google Scholar 

  • Harsha, P. T. 1971: Free turbulent mixing: a critical evaluation of theory and experiment. Arnold Engineering Development Center Report AEDC-TR-71-36

  • Hawthorne, W. R.; Weddell, D. S.; Hottel, H. C. 1949: Mixing and combustion in turbulent gas jets. In: Third Symposium on Combustion, Flame, and Explosion Phenomena, 266–288. Baltimore: Williams and Wilkins

    Google Scholar 

  • Hill, B. J. 1972: Measurement of local entrainment rate in the initial region of axisymmetric turbulent air jets. J. Fluid Mech. 51, 773–779

    Google Scholar 

  • Hinze, J. O.; van der Hegge Zijnen, B. G. 1947: Transfer of heat and matter in the turbulent mixing zone of an axially symmetrical jet. Appl. Sci. Res., Sect. A1, 435–461

    Google Scholar 

  • Keagy, W. R.; Weller, A. E. 1949: A study of freely expanding inhomogeneous jets. In: Proceedings of the 1949 Heat Transfer and Fluid Mechanics Institute, 89–98

  • Komori, S.; Ueda, H. 1984: Turbulent effects on the chemical reaction for a jet in a nonturbulent stream and for a plume in a grid-generated turbulence. Phys. Fluids 27, 77–86

    Google Scholar 

  • Kuhlman, J. M. 1987: Variation of entrainment in annular jets. AIAA J. 25, 373–379

    Google Scholar 

  • Lockwood, F. C.; Moneib, H. A. 1980: Fluctuating temperature measurements in a heated round free jet. Combust. Sci. Technol. 22, 63–81

    Google Scholar 

  • Maczyński, J. F. J. 1962: A round jet in an ambient co-axial stream. J. Fluid Mech. 13, 597–608

    Google Scholar 

  • McQuaid, J; Wright, W. 1974: Turbulence measurements with hotwire anemometry in non-homogeneous jets. Int. J. Heat Mass Transfer 17, 341–349

    Google Scholar 

  • Nakamura, I.; Sakai, Y.; Miyata, M. 1982: A study on the fluctuation concentration field in a turbulent jet. Mem. Fac. Eng., Nogoya Univer. 34, 113–124

    Google Scholar 

  • Niwa, C.; Ichizawa, J.; Yoshikawa, N.; Ohtake, K. 1984: Time-resolved concentration measurements of jets by laser Rayleigh method — comparison of He, CO2, and CCl2F2jets. In: Proceedings of the Fourteenth International Symposium on Space Technology and Science, 469-476. Tokyo

  • Pike, E. R. 1969: Photon statistics. Riv. Nuovo Cimento Soc. Ital. Fis. 1 (Numero Speciale), 277–314

    Google Scholar 

  • Pitts, W. M.; Kashiwagi, T. 1984: The application of laser-induced Rayleigh light scattering to the study of turbulent mixing. J. Fluid Mech. 141, 391–429

    Google Scholar 

  • Pitts, W. M. 1986: Effects of global density and Reynolds number variations on mixing in turbulent, axisymmetric jets. Nat. Bur. Stand., NBSIR 86-3340

  • Pitts, W. M. 1991: Reynolds number effects on the mixing behavior of axisymmetric turbulent jets. Exp. Fluids 11, 135–141

    Google Scholar 

  • Reichardt, H. 1964: Turbulente Strahlausbreitung in gleichgerichteter Grundströmung. Forsch. Ingenieurwes. 30, 133–164

    Google Scholar 

  • Ricou, F. P.; Spalding, D. B. 1961: Measurements of entrainment by axisymmetrical turbulent jets. J. Fluid Mech. 11, 21–32

    Google Scholar 

  • Rosensweig, R. E.; Hottel, H. C.; Williams, G. C. 1961: Smokescattered light measurements of turbulent concentration fluctuations. Chem. Eng. Sci. 15, 111–129

    Google Scholar 

  • Schefer, R. W.; Dibble, R. W. 1986: Mixture fraction measurements in a turbulent nonreacting propane jet. AIAA Paper 86-0278

  • Sforza, P. M.; Mons, R. F. 1978: Mass, momentum, and energy transport in turbulent free jets. Int. J. Heat Mass Transfer. 21, 371–384

    Google Scholar 

  • Steward, F. R.; Guruz, A. G. 1977: Aerodynamics of a confined jet with variable density. Combust. Sci. Technol. 16, 29–45

    Google Scholar 

  • Sunavala, P. D.; Hulse, C.; Thring, M. W. 1957: Mixing and combustion in free and enclosed turbulent jet diffusion flames. Combust. Flame 1, 179–193

    Google Scholar 

  • Thring, M. W.; Newby, M. P. 1953: Combustion length of enclosed turbulent jet flames. In: Fourth Symposium (International) on Combustion, 789–796. Pittsburgh: The Standing Committee on Combustion

    Google Scholar 

  • Way, J.; Libby, P. A. 1971: Application of hot-wire anemometry and digital techniques to measurements in a turbulent helium jet. AIAA J. 9, 1567–1573

    Google Scholar 

  • Wilson, R. A. M.; Danckwerts, P. V. 1964: Studies in turbulent mixing — II a hot jet. Chem. Eng. Sci. 19, 885–895

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitts, W.M. Effects of global density ratio on the centerline mixing behavior of axisymmetric turbulent jets. Experiments in Fluids 11, 125–134 (1991). https://doi.org/10.1007/BF00190288

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00190288

Keywords

Navigation