Skip to main content
Log in

Mutations of signal-transducing G proteins in human disease

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Heterotrimeric guanine nucleotide binding proteins (G proteins) couple a large number of cell surface receptors to their intracellular effector molecules, such as enzymes or ion channels. Mutations of G proteins can lead to either activation or inactivation of the corresponding signal transduction pathway and thus cause clinical symptoms. Mutations of heterotrimeric G proteins have been found in a number of endocrine tumors, the McCune-Albright syndrome, Albright's hereditary osteodystrophy, and a combination of precocious puberty and pseudohypoparathyroidism Ia. The identification of the molecular defects underlying the above disorders and the investigation of their functional consequences for metabolism and growth regulation have been the subject of many studies over the past few years. A close understanding of these pathophysiologic mechanisms is crucial for the development of therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AHO :

Albright's hereditary osteodystrophy

G protein :

Guanine nucleotide binding proteins

Gs protein :

Stimulatory G protein

Gi protein :

Inhibitory G protein

GHRH :

Growth hormone releasing hormone

MAS :

McCune-Albright syndrome

PHP :

Pseudohypoparathyroidism

PPHP :

Pseudopseudohypoparathyroidismus

PTH :

Parathormone

References

  • Albright F, Butler AM, Hampton AO, Smith P (1937) Syndrome characterized by osteitis fibrosa disseminata, areas of pigmentation of the skin and hyperthyroidism. N Engl J Med 216:727–746

    Google Scholar 

  • Albright F, Burnett CH, Smith PH, Parson W (1942) Pseudohypoparathyroidism — an example of “Seabright-Bantam-Syndrome.” Endocrinology 30:922–932

    Google Scholar 

  • Albright F, Forbes AP, Hennemann PH (1952) Pseudo-pseudo-hypoparathyroidism. Trans Assoc Am Physicians 65:337–350

    Google Scholar 

  • Barbacid M (1987) Ras genes. Annu Rev Biochem 56:779–827

    Google Scholar 

  • Birnbaumer L (1990) G proteins in signal transduction. Annu Rev Pharmacol Toxicol 30:675–705

    Google Scholar 

  • Böhm M, Gierschik P, Jakobs KH, Pieske B, Schnabel P, Ungerer M, Erdmann E (1990) Increase of Giα in human hearts with dilated but not ischemic cardiomyopathy. Circulation 82:1249–1265

    Google Scholar 

  • Bourne HR, Kaslow HR, Brickman AS, Farfel Z (1981) Fibroblast defect in Pseudohypoparathyroidism, type I: reduced activity of receptor-cyclase coupling protein. J Clin Endocrinol Metab 53:636–640

    Google Scholar 

  • Brown JC, Smith AE (1970) Initiator codons in eukaryotes. Nature 226:610–612

    Google Scholar 

  • Camps M, Hou C, Sidiropoulos D, Stock JB, Jakobs KH, Gierschik P (1992a) Stimulation of phospholipase C by guanine-nucleotide-binding protein βγ subunits. Eur J Biochem 206:821–831

    Google Scholar 

  • Camps M, Carozzi A, Schnabel P, Scheer A, Parker PJ, Gierschik P (1992b) Isozyme-selective stimulation of phospholipase Cβ2 by G protein βγ-subunits. Nature 360:684–686

    Google Scholar 

  • Carter A, Bardin C, Collins R, Simonds C, Bray P, Spiegel AM (1987) Reduced expression of multiple forms of the α subunit of the stimulatory GTP-binding protein in pseudohypoparathyroidism type Ia. Proc Natl Acad Sci USA 84:7266–7269

    Google Scholar 

  • Chase LR, Melson GL, Aurbach GD (1969) Pseudohypoparathyroidism: defective excretion of 3′5′-AMP in response to parathyroid hormone. J Clin Invest 48:1832–1841

    Google Scholar 

  • Conklin BR, Bourne HR (1993) Structural elements of Gα subunits that interact with Gβγ, receptors, and effectors. Cell 73:631–641

    Google Scholar 

  • Der CJ, Finkel T, Cooper GM (1986) Biological and biochemical properties of human ras genes mutated at codon 61. Cell 44:167–176

    Google Scholar 

  • DeVivo M, Chen J, Codina J, Iyengar R (1992) Enhanced phospholipase C stimulation and transformation in NIH-3T3 cells expressing Q209L Gq-alpha-subunits. J Biol Chem 267:18263–18266

    Google Scholar 

  • Farfel Z, Bourne HR (1980) Deficient activity of receptor-cyclase coupling protein in platelets of patients with pseudohypoparathyroidism. J Clin Endocrinol 51:1202–1204

    Google Scholar 

  • Farfel Z, Brickman AS, Kaslow HR, Brothers VM, Bourne HR (1980) Defect of recepor-cyclase coupling protein in pseudohypoparathyroidism. N Engl J Med 303:237–242

    Google Scholar 

  • Feig LA, Cooper, GM (1988) Relationship among guanine nucleotide exchange, GTP hydrolysis, and transformation potential of mutated ras proteins. Mol Cell Biol 8:2472–2478

    Google Scholar 

  • Feldman AM, Cates AE, Veazey WB, Hershberger RE, Bristow MR, Baughman KL, Baumgartner WA, Van Dop C (1988) Increase of the 40,000-mol wt pertussis toxin substrate (G protein) in the failing human heart. J Clin Invest 82:189–197

    Google Scholar 

  • Freissmuth M, Gilman AG (1989) Mutations of Gsα designed to alter the reactivity of the protein with bacterial toxins. Substitutions at Arg187 result in loss of GTPase activity. J Biol Chem 264:21907–21914

    Google Scholar 

  • Gejman PV, Weinstein LS, Martinez M, Spiegel AM, Cao Q, Hsieh WT, Hoehe M, Gershon ES (1991) Genetic mapping of the Gs-alpha subunit gene (GNAS1) to the distal long arm of chromosome 20 using a polymorphism detected by denaturing gradient gel electrophoresis. Genomics 9:782–783

    Google Scholar 

  • Gierschik P, Jakobs KH (1991) ADP-ribosylation of signal-transducing guanine nucleotide-binding proteins by cholera and pertussis toxin. In: Herhen H, Hucho F (eds) Handbook of experimental pharmacology. Selective neurotoxicity, vol 102. Springer, Berlin Heidelberg New York, pp 807

    Google Scholar 

  • Graziano MP, Gilman AG (1989) Synthesis in Escherichia coli of GTPase-deficient mutants of Gs alpha. J Biol Chem 264:15475–15482

    Google Scholar 

  • Gupta SK, Gallego C, Lowndes JM, Pleiman CM, Sable C, Eisfelder BJ, Johnson GL (1992) Analysis of the fibroblast transformation potential of GTPase-deficient gip2 oncogenes. Mol Cell Biol 12:190–197

    Google Scholar 

  • Hermouet S, Merendino JJ, Gutkind JS, Spiegel AM (1991) Activating and inactivating mutations of the α subunit of Gi2 protein have opposite effects on proliferation of NIH 3T3 cells. Proc Natl Acad Sci USA 88:10455–10459

    Google Scholar 

  • Iiri T, Herzmark P, Nakamoto JM, Van Dop C, Bourne HR (1994) Rapid GDP release from Gsα in patients with gain and loss of endocrine function. Nature 371, 164–168

    Google Scholar 

  • Kaziro Y, Itoh H, Kozasa T, Nakafuku M, Satoh T (1991) Structure and function of signal-transducing GTP-binding proteins. Annu Rev Biochem 60:349–400

    Google Scholar 

  • Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L (1989) GTPase inhibiting mutations activate the α chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340:692–696

    Google Scholar 

  • Landis CA, Harsh G, Lyons J, Davis RL, McCormick F, Bourne HR (1990) Clinical characteristics of acromegalic patients whose pituitary tumors contain mutant Gs protein. J Clin Endocrinol Metab 71:1416–1420

    Google Scholar 

  • Letterio JJ, Coughlin SR, Williams LT (1986) Pertussis toxin-sensitive pathway in the stimulation of c-myc expression and DNA synthesis by bombesin. Science 234:1117–1119

    Google Scholar 

  • Levine MA, Downs RW, Singer M, Marx SJ, Aurbach GD, Spiegel AM (1980) Deficient activity of guanine nucleotide regulatory protein in erythrocytes from patients with pseudohypoparathyroidism. Biochem Biophys Res Commun 94:1319–1324

    Google Scholar 

  • Levine MA, Eil C, Downs RW, Spiegel AM (1983) Deficient guanine nucleotide regulatory unit activity in cultured fibroblast membranes from patients with pseudohypoparathyroidism type I. A cause of impaired synthesis of 3′5′-cyclic AMP by intact and broken cells. J Clin Invest 72:316–324

    Google Scholar 

  • Levine MA, Ahn TG, Klupt SF, Kaufman KD, Smallwood PM, Bourne HR, Sullivan KA, van Dop C (1988) Genetic deficiency of the α subunit of the guanine nucleotide-binding protein Gs as the molecular basis for Albright hereditary osteodystrophy. Proc Natl Acad Sci USA 85:617–621

    Google Scholar 

  • Levine MA, Modi WS, O'Brien SJ (1991) Mapping of the gene encoding the alpha subunit of the stimulatory G protein of adenylyl cyclase (GNAS1) to 20q13.2-q13.3 in human by in situ hybridization. Genomics 11:478–479

    Google Scholar 

  • Lyons J, Landis CA, Harsh G, Vallar L, Grünewald K, Feichtinger H, Duh QY, Clark OH, Kawasaki E, Bourne HR, McCormick F (1990) Two G protein oncogenes in human endocrine tumors. Science 249:655–659

    Google Scholar 

  • Mauras N, Blizzard RM (1986) The McCune-Albright syndrome. Acta Endocrinol Suppl 279:207–217

    Google Scholar 

  • McCune DJ (1936) Osteitis fibrosa cystica; the case of a nine year old girl who also exhibits precocious puberty, multiple pigmentation of the skin and hyperthyroidism. Am J Dis Child 52:743–744

    Google Scholar 

  • Neumann J, Scholz H, Döring V, Schmilz W, von Meyerinck L, Kalmar P (1988) Lancet 11:936–937

    Google Scholar 

  • Pace AM, Wong YH, Bourne HR (1991) A mutant α subunit of Gi2 induces neoplastic transformation of rat-1 cells. Proc Natl Acad Sci USA 88:7031–7035

    Google Scholar 

  • Patten JL, Levine MA (1990) Immunochemical analysis of the α-subunit of the stimulatory G-protein of adenylyl cyclase in patients with Albright's hereditary osteodystrophy. J Clin Endocrinol Metab 71:1208–1214

    Google Scholar 

  • Patten JL, Johns DR, Valle D, Eil C, Gruppuso PA, Steele G, Smallwood PM, Levine MA (1990) Mutation in the gene encoding the stimulatory G protein of adenylate cyclase in Albright's hereditary osteodystrophy. N Engl J Med 322:1412–1419

    Google Scholar 

  • Peabody DS (1989) Translation initiation at non-AUG triplets in mammalian cells. J Biol Chem 264:5031–5035

    Google Scholar 

  • Pouyssegur J, Seuwen K (1992) Transmembrane receptors and intracellular pathways that control cell proliferation. Annu Rev Physiol 54:195–210

    Google Scholar 

  • Rozengurt E (1986) Early signals in the mitogenic response. Science 234:161–166

    Google Scholar 

  • Schwindinger WF, Francomano CA, Levine MA (1992) Identification of a mutation in the gene encoding the alpha subunit of the stimulatory G protein of adenylyl cyclase in McCune-Albright syndrome. Proc. Natl. Acad. Sci. USA 89:5152–5156

    Google Scholar 

  • Silve C, Santora A, Breslau N, Moses A, Spiegel A (1986) Selective resistance to parathyroid hormone in cultured skin fibroblasts from patients with pseudohypoparathyroidism type Ib. J Clin Endocrinol Metab 62:640–644

    Google Scholar 

  • Simon MI, Strathmann MP, Gautam N (1991) Diversity of G proteins in signal transduction. Science 252:802–808

    Google Scholar 

  • Spiegel AM, Weinstein LS, Shenker A (1993) Abnormalities in G protein-coupled signal transduction pathways in human disease. J. Clin. Invest. 92,:1119–1125

    Google Scholar 

  • Suarez HG, du Villard JA, Caillou B, Schlumberger M, Parmentier C, Monier R (1991) Gsp mutations in human thyroid tumors. Oncogene 6:677–679

    Google Scholar 

  • Tang WJ, Gilman AG (1991) Type-specific regulation of adenylyl cyclase by G protein βγ subunits. Science 254:1500–1503

    Google Scholar 

  • Vallar L, Spada A, Giannattasio G (1987) Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas. Nature 330:566–568

    Google Scholar 

  • Weinstein LS, Gejman PV, Friedman E, Kadowaki T, Collins RM, Gershon ES, Spiegel AM (1990) Mutations of the Gs α-subunit gene in Albright hereditary osteodystrophy detected by denaturing gradient gel electrophoresis. Proc Natl Acad Sci USA 87:8287–8290

    Google Scholar 

  • Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM (1991) Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med 325:1688–1695

    Google Scholar 

  • Weinstein LS, Gejman PV, de Mazancourt P, American N, Spiegel AM (1992) A heterozygous 4-bp deletion mutation in the Gsα gene (GNAS1) in a patient with Albright hereditary osteodystrophy. Genomics 13:1319–1321

    Google Scholar 

  • Yoshomoto K, Iwahana H, Fukada A, Sano T, Itakura M (1993) Rare mutations of the Gs alpha subunit gene in human endocrine tomors. Cancer 72:1386–1393

    Google Scholar 

  • Zachary I, Millar J, Nanberg E, Higgins T, Rozengurt E (1987) Inhibition of bombesin-induced mitogenesis by pertussis toxin: Dissociation from phospholipase C pathway. Biochem Biophys Res Commun 146:456–463

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnabel, P., Böhm, M. Mutations of signal-transducing G proteins in human disease. J Mol Med 73, 221–228 (1995). https://doi.org/10.1007/BF00189921

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00189921

Key words

Navigation