Advertisement

Journal of Comparative Physiology A

, Volume 167, Issue 6, pp 737–743 | Cite as

A behavioural study of polarization vision in the fly, Musca domestica

  • Andreas von Philipsborn
  • Thomas Labhart
Article

Summary

1.

Tethered flies (Musca domestica) walking on an air-suspended ball show a spontaneous response to the e-vector of polarized light presented from above, i.e. a slowly rotating e-vector induces periodic changes in the flies' turning tendency. Suitable control experiments exclude the possibility that the response is elicited by intensity gradients in the stimulus (Figs. 1 and 2).

2.

Presence of the e-vector response in both white and UV light and its complete absence in yellow light equally support the concept that the specialized dorsal rim area of the compound eye with its highly polarization sensitive UV receptors R7marg and R8marg mediates polarization vision in flies (Fig. 3).

3.

E-vector orientations inducing no turning response additional to the fly's inherent turning tendency are either parallel (avoided e-vector) or perpendicular (preferred e-vector) to the animal's body axis (Figs. 1 and 4).

4.

Considering the fanlike arrangement of the microvillar orientations of R7marg and R8marg in the dorsal rim area of the eye of Calliphora and Musca, a stabilizing function of polarization vision in controlling the flight course is suggested and discussed in the context of results from other behavioural studies.

Key words

Polarization vision Flies Behaviour 

Abbreviations

DRA

dorsal rim area

PS

polarization sensitivity

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batschelet E (1981) Circular statistics in biology. Academic Press. LondonGoogle Scholar
  2. Bernard GD, Wehner R (1977) Functional similarities between polarization vision and colour vision. Vision Res 17:1019–1028Google Scholar
  3. Brunner D, Labhart T (1987) Behavioural evidence for polarization vision in crickets. Physiol Entomol 12:1–10Google Scholar
  4. Buchner E (1976) Elementary movement detectors in an insect visual system. Biol Cybern 24:85–101Google Scholar
  5. Burghause FMHR (1979) Die strukturelle Spezialisierung des dorsalen Augenteils der Grillen (Orthoptera, Grylloidea). Zool Jahrb Abt Allg Zool Physiol Tiere 83:502–525Google Scholar
  6. Coombe PE (1984) The role of retinula cell types in fixation behaviour of walking Drosophila melanogaster. J Comp Physiol A 155:661–672Google Scholar
  7. Dübendorfer A (1971) Untersuchungen zum Anlageplan und Determinationszustand der weiblichen Genitalund Analprimordien von Musca domestica L. Wilhelm Roux' Arch Entwick-lungsmech Org 168:142–168Google Scholar
  8. Fent K (1985) Himmelsorientierung bei der Wüstenameise Cataglyphis bicolor: Bedeutung von Komplexaugen und Ocellen. Dissertation Universität ZürichGoogle Scholar
  9. Hardie RC (1984) Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes of Musca and Calliphora. J Comp Physiol A 154:157–165Google Scholar
  10. Hardie RC (1985) Functional organization of the fly retina. In: Autrum H et al. (eds) Prog Sensory Physiol vol 5. Springer, Berlin Heidelberg New York, pp 2–79Google Scholar
  11. Hardie RC (1986) The photoreceptor array of the dipteran retina. Trends Neurosci 9:419–423Google Scholar
  12. Herrling PL (1976) Regional distribution of three ultrastructural retinula types in the retina of Cataglyphis bicolor Fabr. (Formicidae, Hymenoptera). Cell Tissue Res 169:247–266Google Scholar
  13. Herzmann D, Labhart T (1989) Spectral sensitivity and absolute threshold of polarization vision in crickets: a behavioural study. J Comp Physiol A 165:315–319Google Scholar
  14. Labhart T (1973) Verhaltensphysiologische Bestimmung der Intensitätsund Spektralempfindlichkeit der Honigbiene, Apis mellifera. Dissertation Universität ZürichGoogle Scholar
  15. Labhart T (1980) Specialized photoreceptors at the dorsal rim of the honey bee's compound eye: polarizational and angular sensitivity. J Comp Physiol 141:19–30Google Scholar
  16. Labhart T (1986) The electrophysiology of photoreceptors in different eye regions of the desert ant, Cataglyphis bicolor. J Comp Physiol A 158:1–7Google Scholar
  17. Labhart T (1988) Polarization-opponent interneurons in the insect visual system. Nature 331:435–437Google Scholar
  18. Labhart T, Hodel B, Valenzuela I (1984) The physiology of the cricket's compound eye with particular reference to the anatomically specialized dorsal rim area. J Comp Physiol A 155:289–296Google Scholar
  19. Meyer EP, Labhart T (1981) Pore canals in the cornea of a functionally specialized area of the honey bee's compound eye. Cell Tissue Res 216:491–501Google Scholar
  20. Räber WF (1979) Retinatopographie und Sehfeldtopologie des Komplexauges von Cataglyphis bicolor (Formicidae, Hymenoptera) und einiger verwandter Formiciden-Arten. Dissertation Universität ZürichGoogle Scholar
  21. Sachs L (1969) Statistische Auswertungsmethoden. Springer, Berlin Heidelberg New YorkGoogle Scholar
  22. Schümperli RA (1972) Wavelength-specific behavioural reactions in Drosophila melanogaster. In: Wehner R (ed) Information processing in the visual systems of arthropods. Springer, Berlin Heidelberg New York, pp 155–161Google Scholar
  23. Sommer EW (1979) Untersuchungen zur topographischen Anatomie der Retina und zur Sehfeldtopologie im Auge der Honigbiene, Apis mellifera (Hymenoptera). Dissertation Universität ZürichGoogle Scholar
  24. Strausfeld NJ, Wunderer H (1985) Optic lobe projections of marginal ommatidia in Calliphora erythrocephala specialized for detecting polarized light. Cell Tissue Res 242:163–178Google Scholar
  25. Tinbergen J, Abeln RG (1983) Spectral sensitivity of the landing blowfly. J Comp Physiol 150:319–328Google Scholar
  26. Wada S (1974) Spezielle randzonale Ommatidien der Fliegen (Diptera: Brachycera): Architektur und Verteilung in den Komplexaugen. Z Morphol Tiere 77:87–125Google Scholar
  27. Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Vision in invertebrates. Comparative physiology and evolution (Handbook of sensory physiology VII/6C). Springer, Berlin Heidelberg New York, pp 287–616Google Scholar
  28. Wehner R (1982) Himmelsnavigation bei Insekten: Neurophysiologie und Verhalten. Neujahrsblatt Naturforsch Ges Zürich 184:1–132Google Scholar
  29. Wehner R, Strasser S (1985) The POL area of the honey bee's eye: behavioural evidence. Physiol Entomol 10:337–349Google Scholar
  30. Wehner R, Bernard GD, Geiger E (1975) Twisted and non-twisted rhabdoms and their significance for polarization detection in the bee. J Comp Physiol 104:225–245Google Scholar
  31. Wellington WG (1953) Motor responses evoked by the dorsal ocelli of Sarcophaga aldrichi Parker, and the orientation of the fly to plane polarized light. Nature 172:1177–1179Google Scholar
  32. Wellington WG (1974) Changes in mosquito flight associated with natural changes in polarized light. Can Entomol 106:941–948Google Scholar
  33. Wolf R, Gebhardt B, Gademann R, Heisenberg M (1980) Polarization sensitivity of course control in Drosophila melanogaster. J Comp Physiol 139:177–191Google Scholar
  34. Wunderer H, Smola U (1982a) Fine structure of ommatidia at the dorsal eye margin of Calliphora erythrocephala Meigen (Diptera: Calliphoridae): an eye region specialized for the detection of polarized light. Int J Insect Morphol Embryol 11:25–38Google Scholar
  35. Wunderer H, Smola U (1982b) Morphological differentiation of the central visual cells R7/8 in various regions of the blow-fly eye. Tissue Cell 14:341–358Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Andreas von Philipsborn
    • 1
  • Thomas Labhart
    • 1
  1. 1.Zoologisches Institut der UniversitätZürichSwitzerland

Personalised recommendations