Skip to main content
Log in

Presence of endogenous ent-kaurene in a microsomal preparation from Cucurbita maxima L. Endosperm and implications for kinetic studies of ent-kaurene oxidase

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Microsomal and soluble cell-free extracts prepared from liquid endosperm of Cucurbita maxima L. were found to contain high concentrations of endogenous ent-kaurene and ent-kaurenol by gas chromatography-mass spectrometry-chemical ionization with deuterated internal standards. Increases in the levels of ent-kaurenol, ent-kaurenoic acid, and ent-7α-hydroxykaurenoic acid are correlated with a decline in the amount of endogenous ent-kaurene following a 10 min incubation of microsomes with NADPH and FAD. The rate of oxidation of radiolabeled ent-kaurene by the microsomal fraction was determined, and the need to account for endogenous substrate is shown. Endogenous ent-kaurene present in soluble extracts had the effect of diluting the [14C]ent-kaurene synthesized from [14C]mevalonic acid, resulting in reduced specific radioactivity of the product. The dilution of [14C]ent-kaurene was more pronounced in extracts with higher endogenous ent-kaurene levels or when the reactions were run in the presence of O2 and NADPH. Evidence is presented that suggests differential metabolism of endogenous ent-kaurene and radiolabeled ent-kaurene in both microsomal and soluble extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Kaurene:

ent-kaur-16-ene

MVA:

mevalonic acid

kaurenol:

ent-kaur-16-en-19-ol

kaurenoic acid:

ent-kaur-16-en-19-oic acid

EtOAc:

ethyl acetate

MeOH:

methanol

GC-MS-CI:

gas chromatography-mass spectrometry-chemical ionization

13-OH KA:

ent-13-hydroxykaur-16-en-19-oic acid

7α-OH kaurenoic acid:

ent-7α-hydroxykaur-16-en-19-oic acid

kaurenal:

ent-kaur-16-en-19-al

Me(x):

methyl ester of x

TMS(x):

trimethylsilyl ether or ester of x

GA(x):

gibberellin A(x)

References

  • Ashman JP, MacKenzie A, Bramley PM (1990) Characterization of ent-kaurene oxidase activity from Gibberella fujikuroi. Biochim Biophys Acta 1036:151–157

    PubMed  CAS  Google Scholar 

  • Ashton NW, Shulze A, Hall P, Bandurski RS (1985) Estimation of indole-3-acetic acid in gametophytes of the moss, Physcomitrella patens. Planta 164:142–144

    Article  PubMed  CAS  Google Scholar 

  • Birnberg PR, Maki SL, Brenner ML, Davis GC, Carnes MG (1986) An improved enzymatic synthesis of labeled gibberellin A12-aldehyde and gibberellin A12. Anal Biochem 153:1–8

    Article  PubMed  CAS  Google Scholar 

  • Bowen DH, MacMillan J, Graebe JE (1972) Determination of specific radioactivity of [14C]-compounds by mass spectroscopy. Phytochemistry 11:2253–2257

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Coolbaugh RC (1983) Early stages of gibberellin biosynthesis. In: Crozier A (ed) The biochemistry and physiology of gibberellins, Vol 1. Praeger, New York, pp 53–98

    Google Scholar 

  • Coolbaugh RC, Hirano SS, West CA (1978) Studies on the specificity and site of action of α-cyclopropyl-α-(p-methoxyphenyl)-5-pyrimidine methyl alcohol (ancymidol), a plant growth regulator. Plant Physiol 62:571–576

    PubMed  CAS  Google Scholar 

  • Cross BE, Hanson JR, Curtis PJ, Grove JF, Mollison A (1963) New metabolites of Gibberella fujikuroi. Part II. The isolation of fourteen new metabolites. J Chem Soc 2937–2943

  • Gianfagna T, Zeevaart JAD, Lusk WJ (1983) Synthesis of [2H]gibberellins from steviol using the fungus Gibberella fujikuroi. Phytochemistry 22:427–430

    Article  CAS  Google Scholar 

  • Graebe JE (1972) The biosynthesis of gibberellin precursors in a cell-free system from Cucurbita pepo L. In: Carr DJ (ed) Plant growth substances 1970. Springer-Verlag, Berlin, pp 151–157

    Google Scholar 

  • Graebe JE, Ropers HJ (1978) Gibberellins. In: Letham DS, Goodwin PB, Higgins TJV (eds) Phytohormones and related compounds: A comprehensive treatise, Vol 1. Elsevier, Amsterdam, pp 107–204

    Google Scholar 

  • Gro-Belindemann E, Graebe JE, Stockl D, Hedden P (1991) ent-Kaurene biosynthesis in germinating barley (Hordeum vulgare L., cv Himalaya) caryopses and its relation to α-amylase production. Plant Physiol 96:1099–1104

    Google Scholar 

  • Hanson JR, Willis CL, Parry KP (1980) The inhibition of gibberellic acid biosynthesis by ent-kauran-16,17-epoxide. Phytochemistry 19:2323–2325

    Article  CAS  Google Scholar 

  • Hazebroek JP, Coolbaugh RC (1991) Separation of light-induced [14C]ent-kaurene metabolism and light-induced germination in Grand Rapids lettuce seeds. Plant Physiol 96:837–842

    PubMed  CAS  Google Scholar 

  • Hazebroek JP, Metzger JD (1990) Thermoinductive regulation of gibberellin metabolism in Thlaspi arvense L. I. Metabolism of [2H]-ent-kaurenoic acid and [14C]gibberellin A12-aldehyde. Plant Physiol 94:157–165

    PubMed  CAS  Google Scholar 

  • Hazebroek JP, Metzger JD, Mansager ER (1993) Thermoinductive regulation of gibberellin metabolism in Thlaspi arvense L. II. Cold induction of enzymes in gibberellin biosynthesis. Plant Physiol 102:547–552

    PubMed  CAS  Google Scholar 

  • Hedden P (1983) In vitro metabolism of gibberellins. In: Crozier A (ed) The biochemistry and physiology of gibberellins, Vol. 1. Praeger, New York, pp 99–149

    Google Scholar 

  • Hedden P, Graebe JE (1981) Kaurenolide biosynthesis in a cellfree system from Cucurbita maxima seeds. Phytochemistry 20:1011–1015

    Article  CAS  Google Scholar 

  • Metzger JD, Hazebroek JP (1989) Isolation of gibberellin precursors from heavily pigmented tissues. Plant Physiol 91:1488–1493

    PubMed  CAS  Google Scholar 

  • Moore TC, Barlow SA, Coolbaugh RC (1972) Participation of noncatalytic ‘carrier’ protein in the metabolism of kaurene in cell-free extracts of pea seeds. Phytochemistry 11:3225–3233

    Article  CAS  Google Scholar 

  • Moore TC, Yamane H, Murofushi N, Takahashi N (1988) Concentrations of ent-kaurene and squalene in vegetative rice shoots. J Plant Growth Regul 7:145–151

    Article  CAS  Google Scholar 

  • Murphy PJ, West CA (1969) The role of mixed function oxidases in kaurene metabolism in Echinocystis macrocarpa Greene endosperm. Arch Biochem Biophys 133:395–407

    Article  PubMed  CAS  Google Scholar 

  • Ronnett GV, Knutson VP, Kohanshi RA, Simpson TL, Lane MD (1984) Role of glycosylation in the processing of newly translated insulin proreceptor in 3T3-L1 adipocytes. J Biol Chem 259:4566–4575

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Yamane H, Spray CR, Gaskin P, MacMillian J, Phinney BO (1992) Metabolism of ent-kaurene to gibberellin A12-aldehyde in young shoots of normal maize. Plant Physiol 98:602–610

    Article  PubMed  CAS  Google Scholar 

  • Zeevaart JAD, Gage DA (1993) ent-Kaurene biosynthesis in enhanced by long photoperiods in the long-day plants Spinacia oleracea L. and Agrostemma githago L. Plant Physiol 101:25–29

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazebroek, J.P., Schechter, S.E., Metzger, J.D. et al. Presence of endogenous ent-kaurene in a microsomal preparation from Cucurbita maxima L. Endosperm and implications for kinetic studies of ent-kaurene oxidase. J Plant Growth Regul 12, 109–115 (1993). https://doi.org/10.1007/BF00189640

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00189640

Keywords

Navigation