Skip to main content
Log in

Experimental investigations on two-phase flow past a sphere using digital Particle-Image-Velocimetry

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Digital Particle-Image-Velocimetry was applied to investigate particle trajectories in a gas flow past a sphere. The particle displacement was determined by autocorrelation analysis of image sections. To enhance the signal/noise ratio a synthetic image with idealized particle pictures was generated from the real image. The autocorrelation function (ACF) was calculated using the Fast Hartley Transformation (FHT). The desired secondary maximum of this function was detected by an algorithm with subpixel resolution. A data validation step testing the plausibility of the velocity vectors completes the image analysis. Particle trajectories are traced with help of the particles' velocity vectors. The particle deposition on a sphere can be deduced from the course of these trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Cu :

Cunningham correction

e :

double distance between the limiting particle trajectory and the stagnation point axis

f :

focal length

H :

Hartley-Transform

M :

enlargement factor

S :

interference band spacing

x :

coordinate

y :

coordinate

x p :

particle diameter

x T :

droplet or sphere diameter

V :

image as grey value function

ν ∞.rel :

face velocity of droplet or sphere

Δ :

particle image displacement

Δx :

particle image displacement in x-direction

Δy :

particle image displacement in y-direction

η :

collection efficiency

λ :

wavelength of the laser light

μ L :

fluid viscosity

ρ L :

fluid density

ρ p :

particle density

References

  • Adrian, R. J. 1985: Multi-point vector measurement by pulsed Laser- Velocimetry with image compression. Symp. on fluid control and measurement, Papers of the Soc. of Instrument and Control Engineers, 1065–1078, Tokyo

  • Bracewell, R. H. 1990: Schnelle Hartley-Transformation. München: Oldenbourg

    Google Scholar 

  • Brigham, E. O. 1985: FFT Schnelle Fourier-Tranformation, München: Oldenbourg

    Google Scholar 

  • Dau, G.; Ebert, F. 1987: Determination of aerosol deposition on the front and wake side of spheres by gas-chromatography. J. Aerosol Sci. 18, 147–157

    Google Scholar 

  • Hähner, F.; Ebert, F. 1992; Institut für Mechanische Verfahrenstechnik und Strömungsmechanik, Universität Kaiserslautern (personal communication)

  • Hartley, R. V. L. 1942: More symmetrical Fourier analysis applied to transmission problems, Proc. Inst. Radio Engrs. 30, 144–150

    Google Scholar 

  • Liu, Z. C.; Landreth, C. C.; Adrian, R. J.; Hanratty, T. J. 1991: High resolution measurement of turbulent structure in a channel with Particle-Image-Velocimetry; Exp. Fluids 10; 301–312

    Google Scholar 

  • Lourenco, L. M.; Krothapalli, A.; Smith, C. A. 1989: Particle-Image-Velocimetrie; Lecture Notes in Engineering (Ed.: Brebbia, C. A.; Orzag, S. A.), Vol. 45: Advances in Fluid Mechanics Measurements (Ed.: Gad-el-Hak, M.). Berlin Heidelberg New York: Springer

    Google Scholar 

  • NAG Manual 1991: IBM FUJITSU FORTRAN Installation. NAG Ltd. Oxford

  • Merzkirch, W. 1990: Laser-Speckle-Velocimetrie. Lasermethoden in der Strömungsmeβtechnik (Ed.: Ruck, B.), 71–97 Stuttgart: AT-Fachverlag

    Google Scholar 

  • Reeves, A. A. 1990: Optimized fast Hartley-transform for the MC68000 with applications in image processing. MS Thesis, Dartmouth College, Hannover, New Hampshire

    Google Scholar 

  • Rusband, W. 1991: Image Manual, Department of Health & Human Services, Public Health Service, National Institutes of Health, Bethesda, Maryland

    Google Scholar 

  • Schmidt, M.; Löffler, F. 1991: Das Strömungsfeld um eine Kugel bei kleinen und mittleren Reynoldszahlen (Re < 130); Chem. Ing. Tech. 63, 851–853

    Google Scholar 

  • Schmidt, M.; Löffler, F. 1992 a: Determination of limiting particle trajectories by Particle-Image-Velocimetry, 5. Europ. Symp. Particle Characterization, Nürnberg

  • Schmidt, M.; Löffler, F. 1992b: Calculation of particle deposition on charged droplets. 2. Europ. Symp. Separation of Particles from Gases (PARTEC 92), Nürnberg

  • Walton, W. H.; Woolcock, A. 1960: The supression of air borne dust by water spray. Int. J Air Pollution 3, 129–153

    Google Scholar 

  • Willert, C. E.; Gharib, M. 1991: Digital particle image velocimetry. Exp. Fluids 10, 181–193

    Google Scholar 

  • Wozniak, K.; Wozniak, G.; Rösgen, T. 1990: Particle-Image-Velocimetry applied to thermocapillary Convection. Exp. Fluids 10; 12–16

    Google Scholar 

  • Yao, C. S.; Adrian, R. J. 1984: Orthogonal compression and 1-D analysis technique for measurement of 2-D particle displacements in pulsed laser velocimetrie. Appl. Opt. 23, 1687–1689

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, M., Löffler, F. Experimental investigations on two-phase flow past a sphere using digital Particle-Image-Velocimetry. Experiments in Fluids 14, 296–304 (1993). https://doi.org/10.1007/BF00189487

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00189487

Keywords

Navigation