Skip to main content
Log in

Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera)

II. Similarities between orientation and return flights and the use of motion parallax

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript


Cerceris wasps learn the position of their nest relative to landmarks during the performance of orientation flights. This paper examines the similarities that exist between an orientation flight made on departing from the nest and the subsequent return flight to the nest area.

Returning wasps do not exactly retrace the paths they have flown during the preceding orientation flight. But there are striking similarities: in both types of flight wasps face into similar directions and their orientation depends on their position relative to nest and landmarks in a similar way. During both orientation flights and returns wasps fly along arcs while counter-turning at similar angular velocities. In both flights their flight direction and the retinal position of close landmarks are similar. Wasps on their return thus experience much the same spatio-temporal pattern of visual stimulation on their retina as they generated during their previous orientation flight.

To discover whether wasps exploit the motion parallax information produced by these flights, the arrangement and size of landmarks was altered between the insects' departure and their return. Their search pattern for the hidden nest indicates (i) that they weight close landmarks more heavily than distant ones and (ii) that they frequently search at the appropriate distance from a landmark regardless of its apparent size. Both findings imply that returning wasps recall the patterns of visual motion produced during their orientation flights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  • Anderson AM (1977) A model for landmark learning in the honeybee. J Comp Physiol 114:335–355

    Google Scholar 

  • Cartwright BA, Collett TS (1979) How honey-bees know their distance from a near-by visual landmark. J Exp Biol 82:367–372

    Google Scholar 

  • Cartwright BA, Collett TS (1982) How honey bees use landmarks to guide their return to a food source. Nature 295:560–564

    Google Scholar 

  • Cartwright BA, Collett TS (1983) Landmark learning in bees: experiments and models. J Comp Physiol 151:521–543

    Google Scholar 

  • Cartwright BA, Collett TS (1987) Landmark maps for honeybees. Biol Cybern 57:85–93

    Google Scholar 

  • Cheng K, Collett TS, Wehner R (1986) Honeybees learn the colours of landmarks. J Comp Physiol A 159:521–543

    Google Scholar 

  • Cheng K, Collett TS, Pickhard A, Wehner R (1987) The use of visual landmarks by honeybees: Bees weight landmarks according to their distance to the goal. J Comp Physiol A 161:469–475

    Google Scholar 

  • Collett TS (1992) Landmark learning and guidance in insects. Phil Trans R Soc Lond B 337:295–303

    Google Scholar 

  • Collett TS, Lehrer M (1993) On the learning of distance cues by honeybees when approaching and leaving a goal and an analysis of their orientation flights. J Comp Physiol A (submitted)

  • Iersel JJA van (1975) The extension of the orientation system of Bembix rostrata as used in the vicinity of its nest. In: Baerends G, Beer C, Manning A (eds) Function and evolution of behaviour. Clarendon Press, Oxford, pp 142–168

    Google Scholar 

  • Iersel JJA van, Assem J van den (1964) Aspects of orientation in the digger wasp Bembix rostrata. Anim Behav Suppl 1:145–162

    Google Scholar 

  • Lehrer M (1991) Bees which turn back and look. Naturwissenschaften 78:274–276

    Google Scholar 

  • Lehrer M, Srinivasan MV, Zhang SW, Horridge GA (1988) Motion cues provide the bee's visual world with a third dimension. Nature 332:356–357

    Google Scholar 

  • Opfinger E (1931) Über die Orientierung der Biene an der Futterquelle. Z Vergl Physiol 15:431–487

    Google Scholar 

  • Peitsch D, Fietz A, Hertel H, de Souza J, Ventura DF, Menzel R (1992) The spectral input system of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40

    Google Scholar 

  • Srinivasan MV, Lehrer M, Zhang SW, Horridge GA (1989) How honeybees measure their distance from objects of unknown size. J Comp Physiol A 165:605–613

    Google Scholar 

  • Srinivasan MV, Lehrer M, Horridge GA (1990) Visual figureground discrimination in the honeybee: the role of motion parallax at boundaries. Proc R Soc Lond B 238:331–350

    Google Scholar 

  • Tinbergen N, Kruyt W (1938) Über die Orientierung des Bienenwolfes (Philanthus triangulum Fabr.) III. Die Bevorzugung bestimmter Wegmarken. Z Vergl Physiol 25:292–334

    Google Scholar 

  • Vollbehr J (1975) Zur Orientierung junger Honigbienen bei ihrem 1. Orientierungsflug. Zool Jb Physiol 79:33–69

    Google Scholar 

  • Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Handbook of sensory physiology vol VII/6C. Springer, Berlin Heidelberg New York, pp 287–616

    Google Scholar 

  • Wehner R, Räber F (1979) Visual spatial memory in desert ants, Cataglyphis bicolor (Hymenoptera: Formicidae). Experientia 35:1569–1571

    Google Scholar 

  • Zeil J (1993) Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera): I. Description of flight. J Comp Physiol A 172:189–205

    Google Scholar 

  • Zeil J, Kelber A (1991) Orientation flights in ground-nesting wasps and bees share a common organization. Verh Dtsch Zool Ges 84:371–372

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeil, J. Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera). J Comp Physiol A 172, 207–222 (1993).

Download citation

  • Accepted:

  • Issue Date:

  • DOI:

Key words