Skip to main content
Log in

Local criteria for ductile fracture

  • Published:
International Journal of Fracture Mechanics Aims and scope Submit manuscript

Abstract

Strain distributions in specimens suitable for studying the initiation of fracture are reviewed, and distributions are developed for the steady-state propagation of cracks in plane strain lension of fully plastic materials. The functional forms of local fracture criteria are discussed for different metallurgical mechanisms. It is concluded that:

  1. a)

    pure Mode I (normal) fracture is unlikely to exist except in cleavage.

  2. b)

    there is both theoretical and experimental evidence for the development of both: sharp and flat-bottomed cracks.

  3. c)

    simultaneous diffuse and concentrated (Dugdale-Muskhelishvili) flow fields can occur in torsion of longitudinally grooved bars if the stress-strain curve has a maximum which causes band formation, so that a displacement criterion becomes appropriate for final fracture.

Résumé

On passe en revue les distributions de déformations dans les éprouvettes susceptibles de permettre d'étude de l'amorçage de la rupture, et l'on met l'accent sur les configurations relatives à la propagation statique de fissures amorcées dans des matériaux entièrement plastiques sollicités en ètat de déformation.

Les diverses formulations mathématiques des critères de rupture locale sont discutées en fonction de différents types de mécanismes métallurgiques. On conclut de cette étude que:

  1. Hormis les cas où se rencontre le clivage, une rupture de mode 1 (normale) a peu de chances de suuvenír.

  2. Le développement de fissures aigues et de fissures à fond plat est mis en évidence à ia fois sur le plan théorique et sur le plan expérimental.

  3. Dams des barres nanties d`une rainure longitudinale et soumises à torsion il peut survenir simultanément des champs découlement plastique sans frontières bien précises et de type eoncentré (Dugdale-Muskhelishvili) lorsque la courbe tension dilatation présente un maximum qui, en provoquant la formation d'une bande de glissement, rend approprié le recours à un critère de déplacement pour justifier la rupture finale.

Zusammenfassung

Es wurden Spannungsverteilung an Proben, die zum Studium für die Entstehung von Brüchen geeignet sind, nachgeprüft. Verteilungen für die Fortpflanzung der Risse im Festzustand bei planarer Anspannung und mit völlig plastischem Material, wurden entwickelt. Das funktionelle Verhalten von örtlichen Bruchmerkmalen für verschiedene metallurgische Mekanismen wurde diskutiert. Folgendes wurde festgestellt:

  1. a)

    es ist unwahrscheinlich, dass ein exclusiver Modus I (normal) Bruch besteht, ausser bei Teilung.

  2. b)

    es besteht theoretischer und experimenteller Beweis für die Entwicklung von spitzflächigen und flachbödigen Rissen.

  3. c)

    gleichmässig weitverbreitete und konzentrierte (Dugdale-Muskhelisvili) Flussfelder können in Drehungen von länglich gerillten Riemen vorkommen, wenn die Beanspruchungskurve ein Maximum hat, das Riemenbildung verursacht, so dass ein Verformungsmerkmal für den Endbruch zweckmässig wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Rice J. Appl. Mech.34, 287–298, (1967).

    Google Scholar 

  2. A.A. Griffith Proc. First Inter. Cong. Appl. Mech. (Delft), 55–63, (1924).

  3. E. Orowan Rpt. Prog. Phys12, 185–232, (1949).

    Google Scholar 

  4. F.A. McClintock J. Appl. Mech.35, 363–371. (1968).

    Google Scholar 

  5. C.A. Berg Proc. 4th U.S. Nat. Cong. Appl. Mech.2, 885–892, (1962).

    Google Scholar 

  6. R. Hill The Mathematical Theory of Plasticity, Oxford University Press, (1950).

  7. W. Prager, P.G. Hodge, Jr. Theory of Perfectly Plastic Solids, John Wiley & Sons, Inc., New York, (1951).

    Google Scholar 

  8. F.A. McClintock Welding J. Res. Suppl.26, 202–208, (1961).

    Google Scholar 

  9. B.B. Hundy Metallurgia49, 109–118, (1954).

    Google Scholar 

  10. J.E. Neimark J. Appl. Mech.35, 111–116, (1968). For shoulder width, see also D J.F. Ewing and R. Hill, J. Mech. Phys Solids 15, 115–1241, (1967).

    Google Scholar 

  11. R. Hill J. of Mech. Phys Solids, 6, 236–249. See also J. of Mech. Phys Solids, 5, 302–307, (1958).

  12. B.I. Edelson, W.M. Baldwin, Jr. Trans Quart. A.S.M.55, 230–250, (1962).

    Google Scholar 

  13. H.E. Alpaugh, Jr. ‘Investigation of the Mechanisms of Failure in the Ductile Fracture of Mild Steel’, B.S. Thesis, Dept. of Mech. Eng., M.I.T., Cambridge, (1965).

    Google Scholar 

  14. R. Hodges ‘An Experimental Study of Crack Growth Instability in Fully Plastic Tensile Specimens’, B.S. Thesis, Dept. of Mech. Eng., M.I.T., Cambridge, (1967).

    Google Scholar 

  15. A.J. Wang Quart. Appl. Math.11, 427–438, (1954).

    Google Scholar 

  16. W.N. Findley, D.C. Drucker; D.J.F. Ewing, R. Hill J. Appl. Mech.32, 493–503, (1965); J. Mech. Phys. Solids, 15, 115–124 (1967).

    Google Scholar 

  17. A. Guillen-Preckler, F.A. McClintock, R.D. White Proc. IstInt. Conf. Fracture, Sendai1, 411–427, (1966).

    Google Scholar 

  18. P.W. Bridgman ‘Studies in Large Plastic Flow and Fracture’, McGraw Hill, New York, (1952).

    Google Scholar 

  19. D.P. Clausing ‘The Tensile Fracture of Mild Steel’, PhD. Thesis, Calif. Inst. of Tech., Pasadena, (1966).

    Google Scholar 

  20. K.C. Norris ‘Strain in the Neck of a Tensile Specimen’, M.S. Thesis, M.I.T., Dept. of Mech. Eng., Cambridge, (1967).

    Google Scholar 

  21. F.A. McClintock Materials Res, and Standards, 1, 277–279, (1961).

    Google Scholar 

  22. A.R. Rosenfield, P.K. Dai, G.T. Hahn Proc. First Int. Conf. on Fracture, Sendai1, 223–258, (1966).

    Google Scholar 

  23. J.L. Swedlow, M.L. Williams, W.H. Yang Proc. 1st lnt. Conf. Fracture, Sendai1, 259–282, (1966).

    Google Scholar 

  24. D.A. Bateman, F.J. Bradshaw, D.P. Rooke ‘Some Observations on Surface Deformation Round Cracks in Stressed Sheets’, R.A.E. Tech. Note CPM 63, Ministry of Aviation, London W.C., 2, (1964).

    Google Scholar 

  25. J.B. Walsh, A.C. Mackenzie J. Mech. Phys Solids1, 247–257, (1959).

    Google Scholar 

  26. I. Kayan ‘Crack Initiation and Crack Growth Process on Rectangular Cross Sectional and Longitudinally Notched Bars Under Plastic Torsion’, Research Memo 17, Fatigue and Plasticity Lab., M.I.T., Dept. of Mech. Eng., (See also: R.D. Landis, 1962, ‘Crack Initiation in Rectangular Longitudinally Grooved Specimens Under Plastic Torsion II’, Research Memo 37, Fatigue and Plasticity Lab., M.I.T., Dept. of Mech. Eng., Cambridge, (1959)).

  27. F.A. McClintock, W.R. O'Day, Jr. Proc. Ist lnt. Conf. Fracture, Sendai1, 75–98, (1965).

    Google Scholar 

  28. C.P. Sullivan Welding Research Council Bulletin 122, New York, (1967).

  29. J.J. Gilman J. Metals6, 621–629, (1954).

    Google Scholar 

  30. A.N. Stroh, Phil. Mag.3, 597–606, (1958).

    Google Scholar 

  31. A. Deruyttere, G.B. Greenough J. Inst. Met.84, 337–345, (1956).

    Google Scholar 

  32. T.L. Johnston, R.J. Stokes, C.H. Li Phil. Mag.7, 23–24, (1962).

    Google Scholar 

  33. D. Hull Acta Met.8, 11–18, (1960).

    Google Scholar 

  34. A.H. Cottrell Fracture, B.L. Averbach et al., eds., Wiley, New York, 20–53, (1959).

    Google Scholar 

  35. R.J. Brinkerhoff ‘Elastic-Plastic Strain Fields for a Cylindrical Inclusion in Shear’, M.S. Thesis, Dept. of Mech. Eng., M.I.T., Cambridge, (1966). See also (41).

    Google Scholar 

  36. A. Kelly, G.J. Davies Metallurgical Reviews10, 1–78, (1965).

    Google Scholar 

  37. I.G. Palmer, G.C. Smith 2nd Bolton Landing Conf. on Oxide Dispersion Strengthening, Lake George, New York (1966).

    Google Scholar 

  38. V.A. Tipnis, N.H. Cook J. Basic Eng. Trans ASME89D, 533–540, (1967).

    Google Scholar 

  39. J.F. Knott, A.H. Cottrell J. Iron and Steel Inst.201, 249–260, (1963).

    Google Scholar 

  40. F.A. McClintock, S.M. Kaplan, C.A. Berg, Jr. Int. J. Fracture Mech.2, 614–627, (1966).

    Google Scholar 

  41. F.A. McClintock ‘On the Mechanics of Fracture from Inclusions’, ASM Seminar on Ductility, Cleveland Ohio, (1967).

  42. P.J.E. Forsyth, C.A. Stubbington, R.N. Wilson ‘The Growth of Free Slip Paths as a Primary Cause of Fatigue in Metals’, RAE Tech. Note Met-Phys. 333, Ministry of Aviation, London W.C. 2, (1961).

    Google Scholar 

  43. F.A. McClintockDiscussion in Fatigue in Aircraft Structures A.M. Freudenthal, Ed., Academic Press, New York, 78–79, (1956).

  44. F.A. McClintock, A.S. Argon, editors Mechanical Behavior of Materials, Addison Wesley, Reading, Mass., 522, (1966).

    Google Scholar 

  45. F.A. McClintockProc. Int. Conf. Fatigue of Metals, Inst. Mech. Eng., 538–542,(1956).

  46. H.C. Rogers, Trans. Met. Soc. AIME218, 498–506, (1960).

    Google Scholar 

  47. A.P. Green J. Mech. Phys. Solids2, 197–211, (1954).

    Google Scholar 

  48. J.I. Bluhm, R.J. Morrissey Proc. 1st Int Conf. Fracture, Sendai3, 1739–1780, (1966).

    Google Scholar 

  49. A. Kelly, W.R. Tyson, A.H. Cottrell Phil. Mag.15, 567–586, (1967).

    Google Scholar 

  50. H. Suzuki Proc. 1st lnt. Conf. Fracture, Sendai2, 613–614, (1966).

    Google Scholar 

  51. F.A. McClintock Proc. Roy. Soc. A285, 58–72, (1965).

    Google Scholar 

  52. F.A. McClintock ‘Crack Growth in Fully Plastic Grooved Tensile Specimens’, Research Memo 105, Fatigue and Plasticity Lab., M.I.T., Dept. of Mech. Eng., Cambridge, (1966); Physics of Strength and Plasticity, MIT Press, (1969).

  53. M.F. Henry ‘An Investigation of Fine Cracks in Ductile Fracture, M.S. Thesis, Dept. of Mech. Eng., M.I.T., Cambridge, (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McClintock, F.A. Local criteria for ductile fracture. Int J Fract 4, 101–130 (1968). https://doi.org/10.1007/BF00188939

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00188939

Keywords

Navigation