Skip to main content
Log in

Analysis of neural elements in head-mutant Drosophila embryos suggests segmental origin of the optic lobes

  • Original Article
  • Published:
Roux's archives of developmental biology Aims and scope Submit manuscript

Abstract

We describe the development of 20 sensory organs in the embryonic Drosophila head, which give rise to 7 sensory nerves of the peripheral nervous system (PNS), and 4 ganglia of the stomatogastric nervous system (SNS). Using these neural elements and the optic lobes as well as expression domains of the segment polarity gene engrailed in the wild-type head of Drosophila embryos as markers we examined the phenotype of different mutants which lack various and distinct portions of the embryonic head. In the mutants, distinct neural elements and engrailed expression domains, serving as segmental markers, are deleted. These mutants also affect the optic lobes to various degrees. Our results suggest that the optic lobes are of segmental origin and that they derive from the ocular segment anteriorly adjacent to the antennal segment of the developing head.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baker NE (1988) Localization of transcripts from the wingless gene in whole Drosophila embryos. Development 103:289–298

    Google Scholar 

  • Bier E, Vässin H, Shepherd S, Lee K, McCall K, Barbel S, Ackerman L, Carretto R, Uemura T, Grell E, Jan LY, Jan YN (1989) Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes Dev 3:1273–1287

    Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1985) The embryonic development of Drosophila melanogaster. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Casanova J, Struhl G (1993) The torso receptor localizes as well as transduces the spatial signal specifying terminal body pattern in Drosophila. Nature 362:152–155

    Google Scholar 

  • Cheyette BN, Green PJ, Martin K, Garren H, Hartenstein V, Zipursky SL (1994) The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron 12:977–996

    Google Scholar 

  • Cohen SM, Jürgens G (1990) Mediation of Drosophila head development by gap-like segmentation genes. Nature 346:482–485

    Google Scholar 

  • Dalton D, Chadwick R, McGinnis W (1989) Expression and embryonic function of empty spiracles: a Drosophila homeo box gene with two patterning functions on the anterior-posterior axis of the embryo. Genes Dev 3:1940–1956

    Google Scholar 

  • Dorresteijn AWC, O'Grady B, Fischer A, Porchet-Henneré E, Boilly-Marer Y (1993) Molecular specification of cell lines in the embryo of Platynereis (Annelida). Roux's Arch Dev Biol 202:260–269

    Google Scholar 

  • Finkelstein R, Perrimon N (1990) The orthodenticle gene is regulated by bicoid and torso and specifies Drosophila head development. Nature 346:485–488

    Google Scholar 

  • Fischer A (1985) Reproduction and postembryonic development of the annelid, Platynereis dumerilii. Film C1577., Institut für den wissenschaftlichen Film, Göttingen, Germany

    Google Scholar 

  • Fujita SC, Zipursky SL, Benzer S, Ferrus A, Shotwell SL (1982) Monoclonal antibodies against Drosophila nervous system. Proc Natl Acad Sci USA 79:7929–7933

    Google Scholar 

  • González-Gaitán M, Rothe M, Wimmer EA, Taubert H, Jäckle H (1994) Redundant functions of the genes knirps and knirps-related for the establishment of anterior Drosophila head structures. Proc Natl Acad Sci USA 91:8567–8571

    Google Scholar 

  • Green P, Hartenstein AY, Hartenstein V (1993) The embryonic development of the Drosophila visual system. Cell Tissue Res 273:583–598

    Google Scholar 

  • Haget A (1977) L'embryologie des insectes. In: Grassé P-P (ed) Traité de Zoologie, vol VIII Fascicule V-B. Masson, Paris, pp 134–262

    Google Scholar 

  • Hartenstein V, Tepass U, Gruszynski E (1994) Embryonic development of the stomatogastric nervous system in Drosophila. J Comp Neurol 350:367–381

    Google Scholar 

  • Horridge GA (1965) The Arthropoda. In: Bullock TH, Horridge GA (eds) Structure and function in the nervous systems of inverterbrates, vol 2. Freeman WH and Company, San Francisco, pp 801–1270

    Google Scholar 

  • Jürgens G, Hartenstein V (1993) The terminal regions of the body pattern. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster, vol 1. CSHL Press, Cold Spring Harbor pp 687–746

    Google Scholar 

  • Jürgens G, Lehmann R, Schardin M, Nüsslein-Volhard C (1986) Segmental organization of the head in the embryo of Drosophila melanogaster. Roux's Arch Dev Biol 195:359–377

    Google Scholar 

  • Lee JJ, Kessler DP von, Parks S, Beachy PA (1992) Secretion and localized transcription suggest a role in positional signalling for products of the segmentation gene hedgehog. Cell 71:33–50

    Google Scholar 

  • Martin JR, Raibaud A, Ollo R (1994) Terminal pattern elements in Drosophila embryo induced by the torso-like protein Nature 367:741–745

    Google Scholar 

  • Ouelette RJ, Valet JP, Coté S (1992) Expression of gooseberry-proximal in the Drosophila developing nervous system responds to cues provided by segment polarity genes. Roux's Arch Dev Biol 201:157–168

    Google Scholar 

  • Patel NH, Martin-Blanco E, Coleman KG, Poole SJ, Ellis MC, Kornberg TB. Goodman CS (1989) Expression of engrailed proteins in arthropods, annelids, and chordates. Cell 58:955–968

    Google Scholar 

  • Penzlin H (1985) Stomatogastric nervous system. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology biochemistry and pharmacology, vol 5. Pergamon Press, Oxford, pp 371–406

    Google Scholar 

  • Pignoni F, Baldarelli RM, Steingrímsson E, Diaz RJ, Patapoutian A, Merriam JR, Lengyel JA (1990) The Drosophila gene tailless is expressed at the embryonic termini and is a member of the steroid receptor superfamily. Cell 62:151–163

    Google Scholar 

  • Pignoni F, Steingrímsson E, Lengyel JA(1992) bicoid and the terminal system activate tailless expression in the early Drosophila embryo. Development 115:239–251

    Google Scholar 

  • Rempel JG (1975) The evolution of the insect head: an endless dispute. Questiones Entomologicae 11:7–25

    Google Scholar 

  • Schmidt-Ott U, Technau GM (1992) Expression of en and wg in the embryonic head and brain of Drosophila indicates a refolded band of seven segment remnants. Development 116:111–125

    Google Scholar 

  • Schmidt-Ott U, Technau GM (1994) Fate-mapping in the procephalic region of the embryonic Drosophila head. Roux's Arch Dev Biol 203:367–373

    Google Scholar 

  • Schmidt-Ott U, Sander K, Technau GM (1994a) Expression of engrailed in embryos of a beetle and five dipteran species with special reference to the terminal regions. Roux's Arch Dev Biol 203:298–303

    Google Scholar 

  • Schmidt-Ott U, Gonzalez Gaitan M, Jäckle H, Technau GM (1994b) Number, identity and sequence of the Drosophila head segments as revealed by neural elements and their deletion patterns in mutants. Proc Natl Acad Sci USA 91:8363–8367

    Google Scholar 

  • Schmucker D, Taubert H, Jäckle H (1992) Formation of the Drosophila larval photoreceptor organ and its neuronal differentiation require continuous Krüppel gene activity. Neuron 9:1025–1039

    Google Scholar 

  • Scholtz G (1994) Head segmentation in Crustacea — an immunocytochemical study. Zoology, in press

  • Siewing R (1963) Zum Problem der Arthropodenkopfsegmentierung. Zool Anz 170:429–468

    Google Scholar 

  • Sprenger F, Stevens LM, Nüsslein-Volhard C (1989) The Drosophila gene torso encodes a putative receptor tyrosine kinase. Nature 338:478–483

    Google Scholar 

  • Strecker TR, Merriam JR, Lengyel JA (1988) Graded requirement for the zygotic terminal gene, tailless, in the brain and tail region of the Drosophila embryo. Development 102:721–734

    Google Scholar 

  • Tabata T, Eaton S, Kornberg TB (1992) The Drosophila hedgehog gene is expressed specifically in posterior compartment cells and is a target of engrailed regulation. Genes Dev 6:2635–2645

    Google Scholar 

  • Walldorf U, Gehring WJ (1992) Empty spiracles, a gap gene containing a homeobox involved in Drosophila head development. EMBO J 11:2247–2259

    Google Scholar 

  • Wieschaus E, Nüsslein-Volhard C, Jürgens G (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. Roux's Arch Dev Biol 193:296–307

    Google Scholar 

  • Wimmer EA, Jäckle H, Pfeifle C, Cohen SM (1993) A Drosophila homologue of human Sp1 is a head-specific segmentation gene. Nature 366:690–694

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt-Ott, U., González-Gaitán, M. & Technau, G.M. Analysis of neural elements in head-mutant Drosophila embryos suggests segmental origin of the optic lobes. Roux's Arch Dev Biol 205, 31–44 (1995). https://doi.org/10.1007/BF00188841

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00188841

Key words

Navigation