Roux's archives of developmental biology

, Volume 201, Issue 3, pp 169–172 | Cite as

Heat shock as inducer of metamorphosis in marine invertebrates

  • Michael Kroiher
  • Michael Walther
  • Stefan Berking
Original Articles


In most sessile marine invertebrates, metamorphosis is dependent on environmental cues. Here we report that heat stress is capable of inducing metamorphosis in the hydroid Hydractinia echinata. The onset of heat-induced metamorphosis is correlated with the appearance of heat-shock proteins. Larvae treated with the metamorphosis-inducing agents Cs+ or NH4+ also synthesize heat-shock proteins. In heat-shocked larvae, the internal NH4+-concentration increases. This fits the hypothesis that methylation plays a central role in control of metamorphosis. In the tunicate Ciona intestinalis, a heat shock is able to induce metamorphosis too.

Key words

Heat-shock proteins Metamorphosis Invertebrates Hydractinia echinata Ciona intestinalis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berking S (1986a) Transmethylation and control of pattern formation in hydrozoa. Differentiation 32:10–16Google Scholar
  2. Berking S (1986b) Is homarine a morphogen in the marine hydroid Hydractinia? Roux's Arch Dev Biol 195:33–38Google Scholar
  3. Berking S (1987) Homarine (N-methylpicolinic acid) and trigonelline (N-methylnicotinic acid) appear to be involved in pattern control in a marine hydroid. Development 99:211–220Google Scholar
  4. Berking S (1988) Ammonia, tetraethylammonium, barium and amiloride induce metamorphosis in the marine hydroid Hydractinia. Roux's Arch Dev Biol 197:1–9Google Scholar
  5. Berking S (1991) Control of metamorphosis and pattern formation in Hydractinia (Hydrozoa, Cnidaria). BioEssays 13:323–329Google Scholar
  6. Berking S, Herrmann K (1990) Dicapryloylglycerol and ammonium ions induce metamorphosis of ascidian larvae. Roux's Arch Dev Biol 198:430–432Google Scholar
  7. Berking S, Schüle T (1987) Ammonia induces metamorphosis of the oral half of buds into polyp heads in the scyphozoan Cassiopea. Roux's Arch Dev Biol 196:388–390Google Scholar
  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Google Scholar
  9. Burke RD (1983) The induction of metamorphosis of marine invertebrate larvae: stimulus and response. Can J Zool 61:1701–1719Google Scholar
  10. Chia F-S, Bickel LR (1978) Mechanisms of larval attachment and the induction of settlement and metamorphosis in coelenterates: A review. In: Chia FS, Rice ME (eds) Settlement and metamorphosis of marine invertebrate larvae. Elsevier, North-Holland New York, pp 1–12Google Scholar
  11. Cloney RA (1961) Observations on the mechanism of tail resorption in ascidians. Am Zool 1:67–87Google Scholar
  12. Cloney RA (1982) Ascidian larvae and the events of metamorphosis. Am Zool 22:817–826Google Scholar
  13. Freeman G, Ridgway EB (1990) Cellular and intracellular pathways mediating the metamorphic stimulus in hydrozoan planulae. Roux's Arch Dev Biol 199:63–79Google Scholar
  14. Hofmann DK, Neumann R, Henne K (1978) Strobilation, budding and initiation of scyphistoma morphogenesis in the rhizostome Cassiopea andromeda (Cnidaria: Scyphozoa). Mar Biol 47:161–176Google Scholar
  15. Kroiher M, Walther M, Berking S (1991) Necessity of protein synthesis for metamorphosis in the marine hydroid Hydractinia echinata. Roux's Arch Dev Biol 200:336–341Google Scholar
  16. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:680–685Google Scholar
  17. Leitz T, Klingmann G (1990) Metamorphosis in Hydractinia: studies with activators and inhibitors aiming at protein kinase C and potassium channels. Roux's Arch Dev Biol 199:107–113Google Scholar
  18. Leitz T, Müller WA (1987) Evidence for the involvement of PI-signaling and diacylglycerol second messengers in the initiation of metamorphosis in the hydroid Hydractinia echinata Fleming. Dev Biol 121:82–89Google Scholar
  19. Leitz T, Wirth A (1991) Vanadate, known to interfere with signal transduction, induces metamorphosis in Hydractinia (Coclenterata; Hydrozoa) and causes profound alterations of the larval and postmetamorphic body pattern. Differentiation 47:119–127Google Scholar
  20. Lindquist S, Craig EA (1988) The heat-shock proteins. Ann Rev Genet 22:631–677Google Scholar
  21. Loeb MJ (1972) Strobilation in the Chesapeake Bay sea nettle Chrysaora quinquecirrha: I. The effects of environmental temperature changes on strobilation and growth. J Exp Zool 180:279–292Google Scholar
  22. Lynch WF (1961) Extrinsic factors influencing metamorphosis in bryozoan and ascidian larvae. Am Zool 1:59–66Google Scholar
  23. Müller WA (1969) Auslösung der Metamorphose durch Bakterien bei den Larven von Hydractinia echinata. Zool Jahrb Anat Ontogenet 86:84–95Google Scholar
  24. Müller WA (1985) Tumor promoting phorbol esters induce metamorphosis and multiple head formation in the hydroid Hydractinia. Differentiation 29:216–222Google Scholar
  25. Müller WA, Buchal G (1973) Metamorphose-Induction bei Planulalarven: II. Induktion durch monovalente Kationen: Die Bedeutung des Gibbs-Donnan Verhältnisses und der Na+/K+-ATPase. Roux's Arch Dev Biol 173:122–135Google Scholar
  26. Netherton JC, Gurin S (1982) Biosynthesis and physiological role of homarine in marine shrimp. J Biol Chem 257:11971–11975Google Scholar
  27. Patricolo E, Ortolani G, Casico A (1981) The effect of L-thyroxine on the metamorphosis of Ascidia malaca. Cell Tissue Res 214:289–301Google Scholar
  28. Spangenberg DB (1965) A study of strobilation in Aurelia aurita under controlled conditions. J Exp Zool 160:1–10Google Scholar
  29. Wang C, Lazarides E (1984) Arsenite-induced changes in methylation of the 70,000 dalton heat shock protein in chicken embryo fibroblasts. Biochem Biophys Res Commun 119:735–743Google Scholar
  30. Wittmann W (1977) Auslösung der Metamorphose bei Hydractinia durch Bakterien: Isolierung und Charakterisierung der Bakterien und der auslösenden Substanz. Doctoral dissertation, Techn. University of Braunschweig, FRGGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Michael Kroiher
    • 1
  • Michael Walther
    • 1
  • Stefan Berking
    • 1
  1. 1.Zoologisches Institut der Universität KölnKöln 41Federal Republic of Germany
  2. 2.Department of Biological ChemistryUniversity of CaliforniaIrvineUSA

Personalised recommendations