, Volume 40, Issue 2, pp 83–99 | Cite as

Immunoglobulin light chain class multiplicity and alternative organizational forms in early vertebrate phylogeny

  • Jonathan P. Rast
  • Michele K. Anderson
  • Ronda T. Litman
  • M. Margittai
  • Gary W. Litman
  • Tatsuya Ota
  • Michael J. Shamblott
Original Paper


The prototypic chondrichthyan immunoglobulin (Ig) light chain type (type I) isolated from Heterodontus francisci (horned shark) has a clustered organization in which variable (V), joining (J), and constant (C) elements are in relatively close linkage (V-J-C). Using a polymerase chain reaction-based approach on a light chain peptide sequence from the holocephalan, Hydrolagus colliei (spotted ratfish), it was possible to isolate members of a second light chain gene family. A probe to this light chain (type II) detects homologs in two orders of elasmobranchs, Heterodontus, a galeomorph and Raja erinacea (little skate), a batoid, suggesting that this light chain type may be present throughout the cartilaginous fishes. In all cases, V, J, and C regions of the type II gene are arranged in closely linked clusters typical of all known Ig genes in cartilaginous fishes. All representatives of this type II gene family are joined in the germline. A third (kappa-like) light chain type from Heterodontus is described. These findings establish that a degree of light chain class complexity comparable to that of the mammals is present in the most phylogenetically distant extant jawed vertebrates and that the phenomenon of germline-joined (pre-rearranged) genes, described originally in the heavy chain genes of cartilaginous fishes, extends to light chain genes.


Light Chain Class Complexity Chain Gene Chain Peptide Heavy Chain Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexandre, D., Chuchana, P., Brockly, F., Blancher, A., Lefranc, G., and Lefranc, M. P. First genomic sequence of a human Ig variable gene belonging to subgroup I. Functional genes, pseudogenes and vestigial sequences are interspersed in the IGLV locus. Nucleic Acids Res 17: 3975, 1989Google Scholar
  2. Anderson, M. L. M., Szajnert, M. F., Kaplan, J. C., McColl, L., and Young, B. D. The isolation of a human Ig VK gene from a recombinant library of chromosome 22 and estimation of its copy number. Nucleic Acids Res 12: 6647–6661, 1984Google Scholar
  3. Anderson, M. L. M., Brown, L., McKenzie, E., Kellow, J. E., and Young, B. D. Cloning and sequence analysis of an Ig lambda light chain mRNA expressed in the Burkitt's lymphoma cell line EB4. Nucleic Acids Res 13: 2931–2941, 1985Google Scholar
  4. Bauer, S. R., Kudo, A., and Melchers, F. Structure and pre-B lymphocyte restricted expression of the VpreB gene in humans and conservation of its structure in other mammalian species. EMBO J 7: 111–116, 1988Google Scholar
  5. Bentley, D. L. and Rabbitts, T. H. Human immunoglobulin variable region genes — DNA sequences of two V kappa genes and a pseudogene. Nature 288: 730–733, 1980Google Scholar
  6. Berinstein, N., Levy, S. and Levy, R. Activation of an excluded immunoglobulin allele in a human B lymphoma cell line. Science 244: 337–339, 1989Google Scholar
  7. Bernard, O. D., Hozumi, N., and Tonegawa, S. Sequences of mouse immunoglobulin light chain genes before and after somatic changes. Cell 15: 1133–1144, 1978Google Scholar
  8. Brockly, F., Alexandre, D., Chuchana, P., Huck, S., Lefranc, G., and Lefranc, M. P. First nucleotide sequence of a human immunoglobulin variable lambda gene belonging to subgroup II. Nucleic Acids Res 17: 3976, 1989Google Scholar
  9. Bruck, C., Co, M. S., Slaoui, M., Gaulton, G. N., Smith, T., Fields, B. N., Mullins, J. I., and Greene, M. I. Nucleic acid sequence of an internal image-bearing monoclonal anti-idiotype and its comparison to the sequence of the external antigen. Proc Natl Acad Sci USA 83: 6578–6582, 1986Google Scholar
  10. Carroll, R. L. Vertebrate Paleontology and Evolution, W. H. Freeman and Company, New York, 1988Google Scholar
  11. Chang, H., Dmitrovsky, E., Hieter, P. A., Mitchell, K., Leder, P., Turoczi, L., Kirsch, I. R., and Hollis, G. F. Identification of three new Ig λ-like genes in man. J Exp Med 163: 425–435, 1986Google Scholar
  12. Clarke, S. H., Staudt, L. M., Kavaler, J., Schwartz, D., Gerhard, W. U., and Weigert, M. G. V region gene usage and somatic mutation in the primary and secondary responses to influenza virus hemagglutinin. J Immunol 144: 2795–2801, 1990Google Scholar
  13. Crews, S., Griffin, J., Huang, H., Calame, K., and Hood, L. A single VH gene segment encodes the immune response to phosphorylcholine: somatic mutation is correlated with the class of the antibody. Cell 25: 59–66, 1981Google Scholar
  14. Crowe, J. S., Smith, M. A., and Cooper, H. J. Nucleotide sequence of Y3-Ag 1.2.3. Rat myeloma immunoglobulin kappa chain cDNA. Nucleic Acids Res 17: 7992–7992, 1989Google Scholar
  15. Daggfeldt, A., Bengten, E., and Pilström, L. A cluster type organization of the loci of the immunoglobulin light chain in Atlantic cod (Gadus morhua L.) and rainbow trout (Oncorhynchus mykiss Walbaum) indicated by nucleotide sequences of cDNAs and hybridization analysis. Immunogenetics 38: 199–209, 1993PubMedGoogle Scholar
  16. Dariavach, P., Lefranc, G., and Lefranc, M.-P. Human immunoglobulin C-λ-6 gene encodes theKern+Oz-λ chain and C-λ-4 and C-λ-5 are pseudogenes. Proc Natl Acad Sci USA 84: 9074–9078, 1987Google Scholar
  17. De Ioannes, A. E. and Aguila, H. L. Amino terminal sequence of heavy and light chains from ratfish immunoglobulin. Immunogenetics 30: 175–180, 1989Google Scholar
  18. Devlin, P. E., Ramachandran, K. L., and Cate, R. L. Southern analysis of genomic DNA with unique and degenerate oligonucleotide probes: a method for reducing probe degeneracy. DNA 7: 499–507, 1988Google Scholar
  19. Duvoisin, R. M., Heidmann, O., and Jaton, J.-C. Characterization of four constant region genes of rabbit immunoglobulin-lambda chains. J Immunol 136: 4297–4302, 1986Google Scholar
  20. Duvoisin, R. M., Hayzer, D. J., Belin, D., and Jaton, J.-C. A rabbit Ig lambda L chain C region gene encoding C21 allotypes. J Immunol 141: 1596–1601, 1988Google Scholar
  21. Emorine, L. and Max, E. E. Structural analysis of a rabbit immunoglobulin k2 J-C locus reveals multiple deletions. Nucleic Acids Res 11: 8877–8889, 1983Google Scholar
  22. Even, J., Griffiths, G. M., Berek, C., and Milsten, C. Light chain germline genes and the immune response to 2-phenyloxazolone. EMBO J 4: 3439–3445, 1985Google Scholar
  23. Feinberg, A. P. and Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13, 1983PubMedGoogle Scholar
  24. Foley, R. C., and Beh, K. J. Isolation and sequence of sheep IgH and L chain cDNA. J Immunol 142: 708–711, 1989Google Scholar
  25. Greenberg, A., Steiner, L., Kasahara, M., and Flajnik, M. Isolation of a shark immunoglobulin light chain cDNA clone encoding a protein resembling mammalian type kappa light chains: implications for the evolution of light chains. Proc Natl Acad Sci USA 90: 10603–10607, 1993Google Scholar
  26. Harding, F. A., Amemiya, C. T., Litman, R. T., Cohen, N., and Litman, G. W. Two distinct immunoglobulin heavy chain isotypes in a primitive, cartilaginous fish, Raja erinacea. Nucleic Acids Res 18: 6369–6376, 1990aGoogle Scholar
  27. Harding, F. A., Cohen, N., and Litman, G. W. Immunoglobulin heavy chain gene organization and complexity in the skate, Raja erinacea. Nucleic Acids Res 18: 1015–1020, 1990bGoogle Scholar
  28. Hayzer, D. J., and Jaton, J. C. Cloning and sequencing of two functional rabbit germ-line immunoglobin V lambda genes. Gene 80: 185–191, 1989Google Scholar
  29. Heidmann, O. and Rougeon, F. Immunoglobulin ϰ light-chain diversity in rabbit is based on the 3’ length heterogeneity of germ-line variable genes. Nature 311: 74–76, 1984Google Scholar
  30. Heinrich, G., Traunecker, A., and Tonegawa, S. Somatic mutation creates diversity in the major group of mouse immunoglobulin kappa-light chains. J Exp Med 159: 417–435, 1984Google Scholar
  31. Hieter, P. A., Max, E. E., Seidman, J. G., Maizel, J. V., and Leder, P. Cloned human and mouse kappa immunoglobulin constant and J region genes conserve homology in functional segments. Cell 22: 197–207, 1980Google Scholar
  32. Hieter, P. A., Hollis, G. F., Korsmeyer, S. J., Waldmann, T. A., and Leder, P. Clustered arrangement of immunoglobulin ϰ constant region genes in man. Nature 294: 536–540, 1981Google Scholar
  33. Hoechtl, J., Mueller, C. R., and Zachau, H. G. Recombined flanks of the variable and joining segments of immunoglobulin genes. Proc Natl Acad Sci USA 79: 1383–1387, 1982Google Scholar
  34. Hohman, V. S., Schluter, S. F., and Marchalonis, J. J. Complete sequence of a cDNA clone specifying sandbar shark immunoglobulin light chain: gene organization and implications for the evolution of light chains. Proc Natl Acad Sci USA 89: 276–280, 1992Google Scholar
  35. Hohman, V. S., Schuchman, D. B., Schluter, S. F., and Marchalonis, J. J. Genomic clone for the sandbar shark λ light chain: generation of diversity in the absence of gene rearrangement. Proc Natl Acad Sci USA 90: 9882–9886, 1993Google Scholar
  36. Home, W. A., Ford, J. E., and Gibson, D. M. L chain isotype regulation in horse. I. Characterization of Ig lambda genes. J Immunol 149: 3927–3936, 1992Google Scholar
  37. Hood, L. E., Gray, W. R., and Dreyer, W. J. On the mechanism of antibody synthesis: a species comparison of L-chains. Proc Natl Acad Sci USA 55: 826–832, 1966Google Scholar
  38. Ivanov, V. N., Karginov, V. A., Morozov, I. V., and Gorodetsky, S. I. Molecular cloning of a bovine immunoglobulin lambda chain cDNA. Gene 67: 41–48, 1988Google Scholar
  39. Kabat, E. A., Wu, T. T., Perry, H. M., Gottesman, K. S. and Foeller, C. Sequences of Proteins of Immunological Interest, U. S. Dept. Health and Human Services, Washington, DC, 1991Google Scholar
  40. Kawakami, T., Takahashi, N., and Honjo, T. Complete nucleotide sequence of mouse immunoglobulin u gene and comparison with other immunoglobulin heavy chain genes. Nucleic Acids Res 8: 3933–3945, 1980Google Scholar
  41. Klobeck, H. G., Bornkamm, G. W., Combriato, G., Mocikat, R., Pohlenz, H. D., and Zachau, H. G. Subgroup IV human immunoglobulin K light chains is encoded by a single germline gene. Nucleic Acids Res 13: 6515–6529, 1985Google Scholar
  42. Kobayashi, K., Tomonaga, S., and Kajii, T. A second class of immunoglobulin other than IgM present in the serum of a cartilaginous fish, the skate, Raja kenojei: isolation and characterization. Mol Immunol 21: 397–404, 1984Google Scholar
  43. Kobayashi, K., Tomonaga, S., and Tanaka, S. Identification of a second immunoglobulin in the most primitive shark, the frill shark, Chlamydoselachus anguineus. Dev Comp Immunol 16: 295–299, 1992Google Scholar
  44. Kokubu, F., Hinds, K., Litman, R., Shamblott, M. J., and Litman, G. W. Complete structure and organization of immuunoglobulin heavy chain constant region genes in a phylogenetically primitive vertebrate. EMBO J 7: 1979–1988, 1988aGoogle Scholar
  45. Kokubu, F., Litman, R., Shamblott, M. J., Hinds, K., and Litman, G. W. Diverse organization of immunoglobulin Vh gene loci in a primitive vertebrate. EMBO J 7: 3413–3422, 1988bPubMedGoogle Scholar
  46. Komori, S., Yamasaki, N., Shigeta, M., Isojima, S., and Watanabe, T. Production of heavy-chain class switch variants of human monoclonal antibody by reconmbinant DNA technology. Clin Exp Immunol 71: 508–516, 1988Google Scholar
  47. Kudo, A., and Melchers, F. A second gene V pre-B in the λ5 locus of the mouse which appears to be selectively expressed in pre-B lymphocytes. EMBO J 6: 2267–2272, 1987Google Scholar
  48. Kwan, S. P., Max, E. E., Seidman, J. G., Leder, P., and Scharff, M. D. Two kappa immunoglobulin genes are expressed in the myceloma s107. Cell 26: 57–66, 1981Google Scholar
  49. Lammers, B. M., Beaman, K. D., and Kim, Y. B. Sequence analysis of porcine immunoglobulin light chain cDNAs. Mol Immunol 28: 877–880, 1991Google Scholar
  50. Lawler, A. M., Kearney, J. F., Kuehl, M., and Gearhart, P. J. Early rearrangements of genes encoding heavy chains, use variable gene segments dispersed throughout the locus. Proc Natl Acad Sci USA 86: 6744–6748, 1989Google Scholar
  51. Levy, S., Mendel, E., Kon, S., Avnur, Z., and Levy, R. Mutational hot spots in Ig V region genes of human follicular lymphomas. J Exp Med 168: 475–489, 1988Google Scholar
  52. Litman, G. W., Rast, J. P., Shamblott, M. J., Haire, R. N., Hulst, M., Roess, W., Litman, R. T., Hinds-Frey, K. R., Zilch, A., and Amemiya, C. T. Phylogenetic diversification of immunoglobulin genes and the antibody repertoire. Mol Biol Evol 10: 60–72, 1993Google Scholar
  53. Maisey, J. G. Chondrichthyan phylogeny: a look at the evidence. J Vert Paleont 4: 359–371, 1984Google Scholar
  54. Mami, F., Cazenave, P.-A., and Kindt, T. J. Conservation of the immunoglobulin C-λ-5 gene in the Mus genus. EMBO J 7: 117–122, 1988Google Scholar
  55. Max, E. E., Seidman, J. G., Miller, H., and Leder, P. Variation in the crossover point of kappa-immunoglobulin gene V-J recombination: evidence from a cryptic gene. Cell 21: 793–799, 1980Google Scholar
  56. McCormack, W. T., Carlson, L. M., Tjoelker, L. W., and Thompson, C. B. Evolutionary comparison of the avian IgL locus: combinatorial diversity plays a role in the generation of the antibody repertoire in some avian species. Int Immunol 1: 332–341, 1989Google Scholar
  57. Murphy, P. M., Molecular mimicry and the generation of host defense protein diversity. Cell 72: 823–826, 1993Google Scholar
  58. Needleman, S. B. and Wunsch, C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48: 443–453, 1970PubMedGoogle Scholar
  59. Nei, M. Molecular Evolutionary Genetics, Columbia University Press, New York, 1987Google Scholar
  60. Ng, K. H., Lavigueur, A., Ricard, L., Bouvrette, M., MacLean, S., Cloutier, D., and Gibson, D. M. Characterization of allelic Vk-1 region genes in inbred strains of mice. J Immunol 143: 638–648, 1989Google Scholar
  61. Pech, M. and Zachau, H. G. Immunoglobulin genes of different subgroups are within the VK locus. Nucleic Acids Res 12: 9229–9236, 1984Google Scholar
  62. Pech, M., Hoechtl, J., Schnell, H. and Zachau, H. G. Differences between germ-line and rearranged immunoglobulin V kappa coding sequences suggest a localized mutation mechanism. Nature 291: 668–670, 1981Google Scholar
  63. Reynaud, C.-A., Anquez, V., Grimal, H., and Weil, J.-C. A hyperconversion mechanism generates the chicken light chain preimmune repertoire. Cell 48: 379–388, 1987Google Scholar
  64. Riechmann, L., Clark, M., Waldmann, H., and Winter, G. Reshaping human antibodies for therapy. Nature 332: 323–327, 1988Google Scholar
  65. Rzhetsky, A. and Nei, M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9: 945–967, 1992Google Scholar
  66. Sanchez, P., Marche, P. N., Le Guern, C., and Cazenave, P.-A. Structure of a third murine immunoglobulin lambda light chain variable region that is expressed in laboratory mice. Proc Natl Acad Sci USA 84: 9185–9188, 1987Google Scholar
  67. Sanger, F., Nicklen, S., and Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467, 1977PubMedGoogle Scholar
  68. Schluter, S. F., Hohman, V. S., Edmundson, A. B., and Marchalonis, J. J. Evolution of immunoglobulin light chains: cDNA clones specifying sandbar shark constant regions. Proc Natl Acad Sci USA 86: 9961–9965, 1989Google Scholar
  69. Schwager, J., Bürckert, N., Schwager, M., and Wilson, M. Evolution of immunoglobulin light chain genes: analysis of Xenopus IgL isotypes and their contribution to antibody diversity. EMBO J 10: 505–511, 1991Google Scholar
  70. Selsing, E. and Storb, U. Somatic mutation of immunoglobulin light-chain variable-region genes. Cell 25: 47–58, 1981Google Scholar
  71. Selsing, E., Miller, J., Wilson, R., and Storb, E. Evolution of mouse immunoglobulin ϰ genes. Proc Natl Acad Sci USA 79: 4681–4685, 1982Google Scholar
  72. Shamblott, M. J. and Litman, G. W. Complete nucleotide sequence of primitive vertebrate immunoglobulin light chain genes. Proc Natl Acad Sci USA 86: 4684–4688, 1989aGoogle Scholar
  73. Shamblott, M. J. and Litman, G. W. Genomic organization and sequences of immunoglobulin light chain genes in a primitive vertebrate suggest coevolution of immunoglobulin gene organization. EMBO J 8: 3733–3739, 1989bPubMedGoogle Scholar
  74. Sheffner, R., Mayer, R., Kaushik, A., D'Eustachio, P., Bona, C. A., and Diamond, B. Identification of a new Vk gene family that is highly expressed in hybridomas from an autoimmune mouse strain. J Immunol 145: 1609–1614, 1990Google Scholar
  75. Sheppard, H. W. and Gutman, G. A. Allelic forms rat kappa chain genes: evidence for strong selection at the level of nucleotide sequence. Proc Natl Acad Sci USA 78: 7064–7068, 1981Google Scholar
  76. Steen, M.-L., Hellman, L., and Pettersson, U. The immunoglobulin lambda locus in rat consists of two Cx genes and a single Vx gene. Gene 55: 75–84, 1987Google Scholar
  77. Straubringer, B., Huber, E., Lorenz, W., Osterholzer, E., Pargent, W., Pech, M., Pohlenz, H.-D., Zimmer, F.-J., and Zachau, H. G. The human VK locus: characterization of a duplicated region encoding 28 different immunoglobulin genes. J Mol Biol 199: 23–34, 1988Google Scholar
  78. Tonegawa, S., Maxam, A. M., Tizard, R., Bernard, O. D., and Gilbert, W. Sequence of a mouse germ-line gene for a variable region of an immunoglobulin light chain. Proc Natl Acad Sci USA 75: 1485–1489, 1978Google Scholar
  79. Yamasaki, N., Komori, S., and Watanabe, T. Complementary DNA for a human subgroup IV immunoglobulin lambda-chain. Mol Immunol 24: 981–985, 1987Google Scholar
  80. Zezza, D. J., Mikoryak, C. A., Schwager, J., and Steiner, L. A. Sequence of C region L of chains from Xenopus laevis Ig. J Immunol 146: 4041–4047, 1991Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Jonathan P. Rast
    • 1
  • Michele K. Anderson
    • 1
  • Ronda T. Litman
    • 1
  • M. Margittai
    • 1
  • Gary W. Litman
    • 1
  • Tatsuya Ota
    • 2
  • Michael J. Shamblott
    • 3
  1. 1.All Children's HospitalUniversity of South FloridaSt. PetersburgUSA
  2. 2.Institute of Molecular Evolutionary GeneticsThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Center of Marine BiotechnologyUniversity of MarylandBaltimoreUSA

Personalised recommendations