Skip to main content
Log in

Postnatal development of forebrain regions in the autoimmune NZB-mouse

A model for degeneration in neuronal systems

  • Original Articles
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

NZB-mice are known to have impaired cognitive functions. The aim of the present study is the analysis of the volume growth of different brain regions in NZB/ NBOM-mice, because the functional impairment increases postnatally. The regions analysed include brain structures which are important for learning and memory functions. The comparison between NZB-mice and controls (CFW-and Balb/c-mice) shows that the hippocampal volume in NZB-mice is larger than in controls. However, ectopic neurons are found in the dentate gyrus of NZB-mice, indicating a changed connectivity in this region. The septum and the amygdala show no difference in volume in NZB-mice compared to controls. The adult volume of the entorhinal cortex of the NZB-mice is the smallest of the three strains. The development of this brain region is characterized by an overshooting growth in all strains. The caudate-putamen complex and the globus pallidus of NZB-mice undergo a reduction in volume during the postnatal period. This is not found in the controls. An overshooting growth is seen in the mamillary bodies of the three strains, and in the anterior thalamic nucleus of NZB-mice. However, only the NZB-mice show a prolonged reduction of the volume of the mamillary bodies, which is not finished during the observed time period.

Both regions are important relay stations in the Papez-circuit, a neuronal system associated with learning and memory functions. The prolonged postnatal reduction in volume of the mamillary bodies and the anterior thalamic nucleus of NZB-mice may be the structural correlate of the impaired cognition and memory in this strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alley KE (1974) Morphogenesis of trigeminal mesencephalic nucleus in the hamster: cytogenesis and neurone death. J Embryol Exp Morphol 31:99–364

    Google Scholar 

  • Barbizet J (1963) Defect of memorizing of hippocampal-mamillary origin: a review. J Neurol Neurosurg Psychiatry 26:127–135

    Google Scholar 

  • Bayer SA (1985) Hippocampal region. In: Paxinos G (ed) The rat nervous system. vol. 1. Academic Press, Sydney, pp 335–352

    Google Scholar 

  • Berkson J (1944) Application of the logistic function to bioassay. J Am Stat Assoc 39:357–365

    Google Scholar 

  • Bleier R, Byne W (1985) Septum and hypothalamus. In: Paxinos G (ed) The rat nervous system. vol. 1. Academic Press, Sydney, pp 87–118

    Google Scholar 

  • Bodian D (1966) Spontaneous degeneration in the spinal cord of monkey fetuses. Bull Johns Hopkins Hosp 119:212–234

    Google Scholar 

  • Burck HC (1973) Histologische Technik. Thieme, Stuttgart

    Google Scholar 

  • Das GD, Hine RJ (1972) Nature and significance of spontaneous degeneration of axons in the pyramidal tract. Z Anat Entwicklungsgesch 136:98–114

    Google Scholar 

  • Divac I (1972) Neostriatum and functions of prefrontal cortex. Acta Neurobiol 32:461–477

    Google Scholar 

  • Divac I (1983) Two levels of functional heterogeneity of the neostriatum. Neuroscience 10:1151–1155

    Google Scholar 

  • Faull RLM, Mehler WR (1985) Thalamus. In: Paxinos G (ed) The rat nervous system. vol 1. Academic Press, Sydney, pp 129–168

    Google Scholar 

  • Forster MJ, Retz KC, Lal H (1987) Autoimmune-associated learning and memory deficits in mice: animal models of Alzheimer's disease. Soc Neurosci Abstr 17

  • Heimer L, Alheid GF, Zaborszky L (1985) Basal ganglia. In: Paxinos G (ed) The rat nervous system. vol 1, Academic Press, Sydney, pp 37–86

    Google Scholar 

  • Hoffman SA, Arbogast DN, Ford PM, Shucard DW, Harbeck RJ (1983) Anti-cerebellar cells in New Zealand Black mice as demonstrated by immunofluorescence. Brain Res 142:477–486

    Google Scholar 

  • Howie JB, Helyes BJ (1968) The immunology and pathology of NZB-mice. Adv Immunol 9:215–266

    Google Scholar 

  • Howie JB, Simpson LO (1974) Autoimmune haemolytic disease in NZB-mice. Series Haematol 7:386–426

    Google Scholar 

  • Jung R, Hassler R (1960) The extrapyramidal motor system. In: Am Physiol Soc Handb Physiol, Washington DC, pp 863–927

    Google Scholar 

  • Kretschmann HJ, Wingert F (1971) Computeranwendungen bei Wachstumsproblemen in Biologie und Medizin. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lehmann J, Nagy JL, Atmadja S, Fibiger HC (1980) The nucleus basalis magnocellularis: the origin of a cholinergic projection to the neocortex of the rat. Neuroscience 5:1161–1174

    Google Scholar 

  • Maruyama S, D'Agostini AN (1967) Cell necrosis in the central nervous system of normal rat fetuses. An electron microscopy study. Neurology 17:550–558

    Google Scholar 

  • Nandy K, Lal H, Bennett M, Bennett D (1983) Correlation between a learning disorder and elevated brain-reactive antibodies in aged C57BL/6 and young NZB-mice. Life Sci 33:1499–1503

    Google Scholar 

  • Nowakowsky RS (1987) Development of the hippocampal formation in mutant mice. Soc Neurosci Abstr 17

  • Olmos J, Alheid GF, Beltramin CA (1985) Amygdala. In: Paxinos G (ed) The Rat Nervous System. vol 1. Academic Press, Sydney, pp 223–334

    Google Scholar 

  • Olton DS (1989) Mnemonic functions of the hippocampus: single unit analyses in rats. In: Chan-Palay V, Köhler C (eds) The Hippocampus new Vistas. Liss, New York, pp 411–424

    Google Scholar 

  • Paxinos G, Butcher LL (1985) Organizational principles of the brain as revealed by choline acetyl-transferase and acetylcholinesterase distribution and projections. In: Paxinos G (ed) The rat nervous system. vol 1. Academic Press, Sydney, pp 488–521

    Google Scholar 

  • Quimby FW, Schwartz RS (1982) Systemic lupus erythematodus in mice and dogs. In: Lachmann PJ, Peters DK (eds) Clinical aspects of immunology. vol 2, Blackwell, Oxford, pp 1217–1230

    Google Scholar 

  • Ramon y Cajal S (1911) Histologie du système nerveux de l'homme et des vertébrés, Vol 2. Instituto Ramon y Cajal, Madrid

    Google Scholar 

  • Reier PI, Hughes A (1972) Evidence for spontaneous degeneration during peripheral nerve maturation. Am J Anat 135:147–152

    Google Scholar 

  • Schwegler H, Lipp HP, Crusio WE (1988) NZB-mouse: hippocampal mossy fiber patterns and behavioral profiles of young and older animals. Drug Dev Res 15:297–305

    Google Scholar 

  • Sherman GF, Galaburda AM, Behan PO, Rosen GD (1987) Neuroanatomical anomalies in autoimmune mice. Acta Neuropathol 74:239–242

    Google Scholar 

  • Spencer D, Humphries K, Mathis D, Lal H (1986) Behavioral impairments related to cognitive dysfunction in the autoimmune New-Zealand-Black-Mouse. Behav Neurosci 100:353–358

    Google Scholar 

  • Walsh RJ, Brawer JR (1979) Cytology of the arcuate nucleus in newborn male and female rats. J Anat 128:121–133

    Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG, Clark HW, Coyle JT, De Long MR (1982) Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239

    Google Scholar 

  • Wingert F (1969) Analyse der Wachstumsfunktionen von Hirnteilen und Körpergewicht der Albinomaus. J Hirnforsch 11:133–194

    Google Scholar 

  • Zilles K (1978) Ontogenesis of the visual system. Adv Anat Embryol Cell Biol 54:3

    Google Scholar 

  • Zilles K (1985) Morphological studies on brain structures of the NZB-mouse: an animal model for the aging human brain? In: Traber J, Gispen WH (eds) Senile Dementia of Alzheimer type. Advances in applied neurological sciences, vol 2. Springer, Berlin Heidelberg New York, pp 355–365

    Google Scholar 

  • Zilles K, Wingert F (1976) Quantitative Analyse des Wachstums der Frischvolumina limbischer Kerngebiete im Diencephalon und Mesencephalon einer ontogenetischen Reihe von Albinomäusen. II. Corpus mamillare. J Hirnforsch 17:11–20

    Google Scholar 

  • Zilles K, Schleicher A, Wingert F (1976) Quantitative Analyse des Wachstums der Frischvolumina limbischer Kerngebiete im Diencephalon und Mesencephalon einer ontogenetischen Reihe von Albinomäusen. I. Nucleus habenulare. J Hirnforsch 17:1–10

    Google Scholar 

  • Zilles K, Schleicher A, Pehlemann FW (1982) How many sections must be measured in order to reconstruct the volume of a structure using serial sections? Microsc Acta 86:339–346

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fink, G.R., Zilles, K. & Schleicher, A. Postnatal development of forebrain regions in the autoimmune NZB-mouse. Anat Embryol 183, 579–588 (1991). https://doi.org/10.1007/BF00187907

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00187907

Key words

Navigation