Skip to main content
Log in

Properties of the iodine molecule relevant to laser-induced fluorescence experiments in gas flows

  • Originals
  • A Review
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Laser-induced fluorescence of iodine seed molecules can be used for both flow visualization and accurate measurements of gasdynamic properties. This paper gives an introductory review of the use of iodine in experimental fluid mechanics, including basic formulas for saturated and non-saturated fluorescence (excited with narrowband or broadband lasers), line shape, line strength and quenching behavior. Techniques for the seeding of the molecules into the gas flow and the safe handling of the gas are discussed. Finally, a simple numerical example is given for the calculation of absorption and fluorescence signals with discussion of the measurement of gasdynamic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M.; Stegun, J. A. (eds.) 1964: Handbook of mathematical functions. Washington, D.C.: National Bureau of Standards

    Google Scholar 

  • Bruin, P. 1980: Handling chemicals safely. Amsterdam: Stuurgroep-Chemiekaarten

    Google Scholar 

  • Capelle, G. A.; Broida, H. P. 1973: Lifetimes and quenching cross sections of 2 (B 3 Π + ou ) J. Chem. Phys. 58, 4212–4222

    Google Scholar 

  • Cottereau, M. J. 1986: Single-shot laser-saturated fluorescence measurement: a new method. Appl. Opt. 25, 744–748

    Google Scholar 

  • Epstein, A. H. 1977: Quantitative density visualization in a transonic compressor rotor. J. Eng. Power 99, 460–475

    Google Scholar 

  • Exton, R. J.; Hillard, M. E. 1986: Raman Doppler velocimetry: a unified approach for measuring molecular flow velocity, temperature and pressure. Appl. Opt. 25, 14–21

    Google Scholar 

  • Faris, G. W.; Byer, R. L. 1986: Quantitative optical tomographic imaging of a supersonic jet. Opt. Lett. 11, 413–415

    Google Scholar 

  • Fletcher, D. G.; McDaniel, J. C. 1987: Temperature measurement in a compressible flow field using laser-induced iodine fluorescence. Opt. Lett. 12, 16–18

    Google Scholar 

  • Gerstenkorn, S.; Luc, P. 1978: Atlas du spectre d'absorption de la molecule d'iode. Eds. du Centre National de la Recherche Spectroscopique (C.N.R.S.), Paris

  • Gosselin, R. E.; Hodge, H. C.; Smith, R. P.; Gleason, M. N. 1976: Iodine. In: Clinical toxicology of commercial products. Sect. III, pp. 181–182. Baltimore: Williams

    Google Scholar 

  • Herzberg, G. 1950: Molecular spectra and molecular structure. II. Spectra of diatomic molecules. New York: Van Nostrand Reinhold

    Google Scholar 

  • Hilborn, R. C. 1982: Einstein coefficients, cross sections, f values, dipole moments, and all that. Am. J. Phys. 50, 982–986

    Google Scholar 

  • Hiller, B. 1986: Combined planar measurements of velocity and pressure fields in compressible gas flows using laser-induced iodine fluorescence. Dissertation, T-256, Dept. of Mechanical Engineering, Stanford University

  • Hiller, B.; Hanson, R. K. 1985: Two-frequency laser-induced fluorescence technique for rapid velocity-field measurements in gas flows. Opt. Lett. 10, 206–208

    Google Scholar 

  • Hiller, B.; Hanson, R. K. 1988: Simultaneous planar measurements of velocity and pressure fields in gas flows using laser-induced fluorescence. Appl. Opt. 27, 33–48

    Google Scholar 

  • Hiller, B.; McDaniel, J. C.; Rea, E. C., Jr.; Hanson, R. K. 1983: Laser-induced fluorescence technique for velocity field measurements in subsonic gas flows. Opt. Lett. 8, 474–476

    Google Scholar 

  • Hiller, B.; Booman, R. A.; Hassa, C.; Hanson, R. K. 1984: Velocity visualization in gas flows using laser-induced phosphorescence of biacetyl. Rev. Sci. Instrum. 55, 1964–1967

    Google Scholar 

  • Huber, K. P.; Herzberg, G. 1979: Molecular spectra and molecular structure. IV. Constants of diatomic molecules. New York: Van Nostrand Reinhold

    Google Scholar 

  • Humlicek, J. 1979: An efficient method for evaluation of the complex probability function: the Voigt function and its derivatives. J. Quant. Spectrosc. Radiat. Transfer 21, 309–313

    Google Scholar 

  • Koffend, J. B.; Bacis, R.; Field, R. W. 1979: Continuous wave optically pumped iodine laser. J. Mol. Spectros. 77, 202–212

    Google Scholar 

  • Lee, M. P.; Paul, P. H.; Hanson, R. K. 1986: Laser fluorescence imaging of O2 in combusting flows using an ArF laser. Opt. Lett. 11, 7–9

    Google Scholar 

  • Levinson, M. D.; Schawlow, A. L. 1972: Hyperfine interactions in molecular iodine. Phys. Rev. Sect. A6, 10–20

    Google Scholar 

  • Long, M. B.; Levin, P. S.; Fourguette, D. C. 1985: Simultaneous two-dimensional mapping of species concentration and temperature in turbulent flames. Opt. Lett. 10, 267–269

    Google Scholar 

  • Lucht, R. P.; Peterson, R. C.; Laurendeau, N. M. 1978: Fundamentals of absorption spectroscopy for selected flame radicals. Report PURDU-78–06 Purdue University, West Lafayette/IN

    Google Scholar 

  • Massey, G. A.; Lemon, C. J. 1984: Feasibility of measuring temperature and density fluctuations in air using laser-induced O2 fluorescence. IEEE J. Quantum Electron. QE-20, 454–457

    Google Scholar 

  • McDaniel, J. C. 1982: Investigation of laser-induced fluorescence for the measurement of density in compressible flows. Dissertation, Dept. of Aeronautics and Astronautics, Stanford University

  • McDaniel, J. C. 1983: Quantitative measurement of density and velocity in compressible flows using laser-induced iodine fluorescence. AIAA paper 83-0049

  • McDaniel, J. C. 1984: Nonintrusive pressure measurements with laser-induced iodine fluorescence. Prog. Astronaut. Aeronaut. 92, 107–131

    Google Scholar 

  • McDaniel, J. C.; Graves, J., Jr. 1986: A laser-induced fluorescence visualization study of transverse, sonic fuel injection in a non-reacting supersonic combustor. AIAA paper 86-0507

  • Miles, R B. 1975: Resonant Doppler velocimeter. Phys. Fluids 18, 751–752

    Google Scholar 

  • Nakagawa, K.; Kitamura, M.; Suzuki, K.; Kondow, T.; Kuchitsu, K.; Munakata, T.; Kasuya, T. 1986: Vibrational-state dependence of the cross sections for fluorescence quenching of I 2 (B 3Π +ou ) by foreign gases. Chem. Phys. 106, 259–268

    Google Scholar 

  • Nicolai, J.-P.; Heaven, M. C. 1986: Electronic quenching of I 2 (B 3Π +ou ) state by He at low collision energies. J. Chem. Phys. 84, 6694–6698

    Google Scholar 

  • Perry, R. H.; Green, D. W.; Maloney, J. O. (eds.) 1973: Chemical engineer's handbook. New York: McGraw-Hill

    Google Scholar 

  • Rapagnani, N. L.; Davis, S. J. 1979: Laser-induced fluorescence measurements in a chemical laser flowfield. AIAA J. 17, 1402–1404

    Google Scholar 

  • Seitzman, J. M.; Kychakoff, G.; Hanson, R. K. 1985: Instantaneous temperature field measurements using planar laser-induced fluorescence. Opt. Lett. 9, 439–441

    Google Scholar 

  • Tellinghuisen, J. 1978: Inensity factors for the I 2 B-X band system. J. Quant. Spectrosc. Radiat. Transfer 19, 149–161

    Google Scholar 

  • Teshima, K. 1983: Visualization for a free jet by a laser induced fluorescence method and its structure. In: Proc. Symp. Mechanics for Space Flight. (ed. Oshima, K.). pp. 52–60. Tokyo: The Institute of Space and Aeronautical Science

    Google Scholar 

  • Vincenti, W. G.; Kruger, C. H. 1965: Introduction to physical gas dynamics. Huntington/NY: R. E. Krieger

    Google Scholar 

  • Yip, B.; Long, M. B. 1986: Instantaneous planar measurements of the complete three-dimensional scalar gradient in a turbulent jet. Opt. Lett. 11, 64–66

    Google Scholar 

  • Zimmermann, M.; Miles, R. B. 1980: Hypersonic-helium-flow-field measurements with the resonant Doppler velocimeter. Appl. Phys. Lett. 37, 885–887

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiller, B., Hanson, R.K. Properties of the iodine molecule relevant to laser-induced fluorescence experiments in gas flows. Experiments in Fluids 10, 1–11 (1990). https://doi.org/10.1007/BF00187865

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00187865

Keywords

Navigation