Advertisement

European Radiology

, Volume 2, Issue 6, pp 542–547 | Cite as

Digital luminescent radiography for diagnosis of skeletal injuries

  • B. Buddenbrock
  • R.-D. Müller
  • V. John
  • H. J. Kock
  • H. Hirche
  • M. Voss
  • E. Löhr
  • K. P. Schmit-Neuerburg
Original Articles Muskuloskeletal radiology
  • 23 Downloads

Abstract

In the course of a comparative study 231 patients with traumatic lesions in skeletal and soft tissue areas were X-rayed using conventional film radiography and digital luminescence radiography (DLR). The results were evaluated by radiologists and traumatologists on the basis of optimised image post-processing in addition to the standard digital presentations. The imaging quality of compacta, spongiosa, soft tissues, fracture lines and osteosynthesis material was assessed in comparison with the screen-film images. Whereas the standard digital presentation in the “conventionally adjusted” imaging mode was inferior to the screen-film radiograph, the “edge-enhanced” standard presentation proved to be advantageous in the imaging of soft tissues (frequency of first-place ratings: DLR conventional 6%, screen-film system 21%, DLR edge-enhanced 31%). In the overall evaluation high-frequency filtered inverse image post-processing showed the highest diagnostic potential (frequency of first-place ratings: 41%). A conclusive assessment of metal implants is hindered by overshoot artefacts and can only be achieved through time-consuming post-processing of the stored image data.

Key words

Digital luminescence radiography Skeletal diagnosis Traumatology Standard digital images Image post-processing Creation of artefacts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Greinacher CFC (1986) Ein Bildkommunikationssystem für die radiologische Abteilung. Röntgenpraxis 39: 381–389Google Scholar
  2. 2.
    Greinacher CFC, Müller K, Fuchs D (1987) Digital Bildinformationssysteme in der Radiologie: Stand und Entwicklungstendenzen. Digit Bilddiagnostik 4: 87–104Google Scholar
  3. 3.
    Smathers RL, Brody WR (1985) Digital radiography: current and future trends. Br J Radiol 58: 285–307Google Scholar
  4. 4.
    Merrit CRB (1986) Computed radiographic imaging using photostimulable phosphors. Medicamundi 31 (2): 45–56Google Scholar
  5. 5.
    Merrit CRB, Matthews CC, Steinhorn D, Balter S (1985) Digital imaging of the chest. J Thorac Imaging 1: 1–13Google Scholar
  6. 6.
    Petterson H, Aspelin P, Boijsen E, Herrlin K, Egung N (1988) Digital radiography of the spine, large bones and jointsusing stimulable phosphor: eraly clinical experience. Acta Radiol 29: 267–272Google Scholar
  7. 7.
    Wiesmann W, Reiser M, Pauly Th, Fiebrich M, Blick U, Peters PE (1990) Darstellung von Metallimplantaten mit der digitalen Lumineszenzradiographie. Fortschr Röntgenstr 152: 687–692Google Scholar
  8. 8.
    Buchmann F (1987) Der Einstieg in die digitale Radiographie. Med Tech 107: 1633Google Scholar
  9. 9.
    Döhring W, Prokop M, Bergh B, Buchmann F, Schmidt J (1986) Prinzip und Anwendung der digitalen Lumineszenz-Radiographie. Röntgenstrahlen 56: 16–23Google Scholar
  10. 10.
    Hintze A, Jütten G (1986) Digital Radigraphie: Erfahrungen mit dem RP-System. Fortschr Röntgenstr 145: 91Google Scholar
  11. 11.
    Müller R-D, John V, Heer V, Voß M, Löhr E (1990) Interaktive Bildnachverarbeitung digitaler Lumineszenzradiogramme. Electromedia 58(2): 48–55Google Scholar
  12. 12.
    Sonoda M, Takano M, Miyahara J, Kato H (1983) Computed radiography utilizing scanning laser stimulated luminescence. Radiology 148: 833–838Google Scholar
  13. 13.
    Miyahara J (1987) Imaging plate. In: Tateno Y, Iinuma T, Takano M (eds) Computed radiography. Springer, Berlin Heidelberg New York, 7–15Google Scholar
  14. 14.
    Galanski M, Prokop M, Oestmann JW, Reichelt S, von Falkenhausen U (1990) Anwendung der digitalen Lumineszenzradiographie in der Skelettdiagnostik: ROC-Studie zur Erkennbarkeit kortikaler Läsionen. In: Schneider GH, Vogler E,Kocever K (eds) Digitale Bildgebung: Interventionelle Radiologie, integrierte digitale Radiographie. Blackwell Ueberreuter Wissenschaft, Berlin, pp 234–236Google Scholar
  15. 15.
    Ishida M (1987) Image processing. In: Tateno Y, Iinuma T, Takano M (eds) Computed tomography. Springer, Berlin, pp 27–28Google Scholar
  16. 16.
    Geißel:oder P, Zeitler E (1990) Lumineszenzradiographie: Prinzip und erste Erfahrungen im Bereich der traumatologischen Radiologie des Skelettsystems. electromedica 58(2): 38–47Google Scholar
  17. 17.
    Schmidt Ch, Deininger HK (1990) Die digitale Bildverstärkerradiographie: ein neues Konzept für die traumatologische Röntgendiagnostik. Forsschr Röntgenstr 152: 51–55Google Scholar
  18. 18.
    Bohndorf K, Wein B, Stangardt A, Alzen G, Günther R-W (1989) Digitale Radiographie: ein neuer Ansatz in der Röntgendiagnostik. Orthopäde 18: 66–71Google Scholar
  19. 19.
    McAdams HP, Johnson GA, Suddarh SA, Ravin CE (1986) Histogram-directed processing of digital chest imaging. Invest Radiol 21: 253–259Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • B. Buddenbrock
    • 1
  • R.-D. Müller
    • 1
  • V. John
    • 1
  • H. J. Kock
    • 2
  • H. Hirche
    • 3
  • M. Voss
    • 1
  • E. Löhr
    • 1
  • K. P. Schmit-Neuerburg
    • 2
  1. 1.Central Institute for Radiological DiagnosticsUniversity Hospital of GHS EssenGermany
  2. 2.Department of TraumatologyUniversity Hospital of GHS EssenGermany
  3. 3.Institute of Medical Informatics and BiomathematicsUniversity Hospital of GHS EssenGermany

Personalised recommendations