European Radiology

, Volume 2, Issue 6, pp 503–507 | Cite as

Three-dimensional reconstruction

Part I: Applications and techniques
  • M. Vahlensieck
  • Ph. Lang
  • W. P. Chan
  • S. Grampp
  • H. K. Genant


Three-dimensional reconstruction of cross-sectional imaging data is gaining increasing acceptance by clinicians. Some applications have been introduced in routine imaging. These applications are summarised and discussed. In order to yield a three-dimensional rendered image several steps such as preprocessing, segmentation, interpolation and rendering are necessary, and various modifications of each step are possible. The technical possibilities in each step are summarised and described.

Key words

Three-dimensional reconstruction: applications, preprocessing, segmentation, shading, rendering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leboucq N, Montoya y Martinez P, Catan P (1990) 3D study of the skull base in craniosynostosis. Diagn Interv Radiol 2: 219–228Google Scholar
  2. 2.
    Vannier MW, Marsh JL, Warren GO (1984) Three-Dimensional CT reconstruction images for Craniofacial Surgical Planning and Evaluation. Radiology 150: 179–184Google Scholar
  3. 3.
    Vannier MW, Marsh JL, Gado MH, Totty WG, Gilula LA, Evens RG (1983) Clinical applications of threedimensional surface reconstruction from CT scans: experience with 250 patient studies. Electromedica 4: 123–131Google Scholar
  4. 4.
    Scott WW, Fishnan E, Magid D (1987) Acetabular fractures: optimal imaging. Radiology 165: 537–539Google Scholar
  5. 5.
    Pate D, Resnick D, Andre M, Sartoris DJ, Kursunoglo S, Bielecki D, et al (1986) Three-dimensional imaging of the musculoskeletal system. AJR 147: 545–551Google Scholar
  6. 6.
    Fishman EK, Drebin B, Magid D, Scott W, Ney D, Brooker AF, et al. (1987) Volumetric rendering techniques: applications for three-dimensional imaging of the hip. Radiology 163: 737–738Google Scholar
  7. 7.
    Lang P, Genant HK, Steiger P, Stoller DW, Heuck AF (1989) 3-D reformatting asserts clinical potential in MRI. Diagn Imaging 6: 100–105Google Scholar
  8. 8.
    Woolson ST (1986) Three-dimensional bone imaging and preoperative planning of reconstructive hip surgery. Contemp Orthop 5: 13–22Google Scholar
  9. 9.
    Reynolds RA, Sontag MR, Chen LS (1988) An algorithm for three-dimensional visualization of radiation therapy beams. Med Phys 1: 24–28Google Scholar
  10. 10.
    Wallis JW, Miller TR (1991) Three-dimensional display in nuclear medicine and radiology. J Nuclear Med 3: 534–546Google Scholar
  11. 11.
    Lang P, Genant HK, Steiger P, Lindquist T, Moore S, Skinner SR (1989) Three-dimensional digital displays in congenital dislocations of the hip: preliminary experience. J Pediatr Orthop 9: 532–537Google Scholar
  12. 12.
    Lang P, Hedtmann A, Genant HK, Jergesen H, Steiger P (1988) Dreidimensionale Computertomographie bei der Osteochondrosis dissecans der Talusrolle: ein Fallbericht. Orthopädische Praxis 12: 779–782Google Scholar
  13. 13.
    Lang P, Genant HK, Steiger P, Chafetz N, Morris JM (1988) Dreidimensionale Computertomographie und multiplanare CT-Reformation bei lumbalen Spondylodesen. Fortschr Röntgenstr 5: 524–529Google Scholar
  14. 14.
    Lang P, Genant HK, Steiger P, Lindquist S, Skinner S, Hedtmann A, Krämer J (1989) Kongenitale Hüftluxation: Dreidimensionale Rekonstruktion von CT und MR. Orthopädische Praxis 6: 371–374Google Scholar
  15. 15.
    Lang P, Genant HK, Chafetz N, Steiger P, Morris JM (1988) Three-dimensional computed tomography and multiplanar reformations in the assessment of pseudarthrosis in posterior lumbar fusion patients. Spine 1: 59–64Google Scholar
  16. 16.
    Lang P, Steiger P, Genant HK, Chafetz N, Lindquist T, Skinner S, Moore S (1988) Three-dimensional CT and MR imaging in congenital dislocation of the hip: clinical and technical considerations. J Comp Assist Tomogr 3: 459–464Google Scholar
  17. 17.
    Arridge SR, Grindrod SR, Linney AD, Tofts PS, Wicks D (1989) Using greyscale voxel databases for improved shading and segmentation. Med Inform 2: 157–171Google Scholar
  18. 18.
    Tiede U, Hoehne KH, Bomans M, Pommert A, Riemer M, Wiebecke G (1990) Surface rendering: investigation of medical 3D-rendering algoriths. IEEE Comput Graphics Applic 3: 41–53Google Scholar
  19. 19.
    Herman GT, Udupa JK (1983) Display of 3D digital images: computational foundations and medical applications. IEEE Comput Graphics Applic 39–45Google Scholar
  20. 20.
    Wrazidlo W, Brambs HJ, Lederer W, Schneider S, Geiger B, Fisher C (1991) An alternative method of three-dimensional reconstruction from two-dimensional CT and MR data sets. Eur J Radiol 12: 11–16Google Scholar
  21. 21.
    Hemmy DC, Lindquist TR (1987) Optimizing 3D imaging techniques to meet clinical requirements. National Computer Graphics Association, Conference Proceedings, Technical Sessions, pp 69–80Google Scholar
  22. 22.
    Ney DR, Fishman K, Magid D, Drebin RA (1990) Volumetric rendering of computed tomography data: principles and techniques. IEEE Comput Graphics Applic 3: 24–32Google Scholar
  23. 23.
    Drebin RA, Magid D, Robertson DD, Fishmann EK (1989) Fidelity of threedimensional CT imaging for detecting fracture gaps. J Comput Assist Tomogr 3: 487–489Google Scholar
  24. 24.
    Bomans M, Höhne KH, Tiede U, Riemer M (1990) 3-D segmentation of MR images of the head for 3-D display. IEEE Trans Med Imaging 2: 177–183Google Scholar
  25. 25.
    Cline HE, Lorensen WE, Kikins R, Jolesz F (1990) Three-dimensional segmentation of MR images of the head using probability and connectivity. J Comput Assist Tomogr 6: 1037–1045Google Scholar
  26. 26.
    Phong BT (1973) Illumination for computer-generated pictures. CACM 6: 311–317Google Scholar
  27. 27.
    Höhne KH, Bernstein R (1986) Shading 3D-images from CT using grey-level gradients. Trans Med Imaging 1: 45–47Google Scholar
  28. 28.
    Gibson CJ (1989) Evaluation of shading algorithms for surface display: depth information, colour and transparency. Med Inform 2: 97–108Google Scholar
  29. 29.
    Rusinek H, Mourino MR, Firooznia H, Weinreb JC, Chase NE (1989) Volumetric rendering of MR images. Radiology 171: 269–272Google Scholar
  30. 30.
    Drebin RA, Carpenter L, Hanrahan P (1988) Volume rendering. Comput Graphics 22: 65–74Google Scholar
  31. 31.
    Upson C, Keeler M (1988) VBUFFER: visible volume rendering. Comput Graphics 4: 59–64Google Scholar
  32. 32.
    Westhofer L (1989) Interactive volume rendering. Chapel Hill, NCGoogle Scholar
  33. 33.
    Sabella P (1988) A rendering algorithm for visualizing 3D scalar fields. Comput Graphics 22: 51–58Google Scholar
  34. 34.
    Levoy M (1988) Display of surfaces from volume data. Comput Graphics Applic 3: 29–37Google Scholar
  35. 35.
    Fishman EK, Magid D, Ney DR, Drebin RA, Kuhlman JE (1988) Three-dimensional imaging and display of musculoskeletal anatomy. J Comput Assist Tomogr 3: 465–467Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • M. Vahlensieck
    • 1
    • 2
  • Ph. Lang
    • 1
  • W. P. Chan
    • 1
  • S. Grampp
    • 1
  • H. K. Genant
    • 1
  1. 1.Department of RadiologyUniversity of CaliforniaSan FranciscoUSA
  2. 2.Radiologische Universitätsklinik BonnBonn 1Germany

Personalised recommendations