Skip to main content
Log in

Isothermal vapour-phase epitaxy of mercury-cadmium telluride (Hg,Cd)Te

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Isothermal vapour-phase epitaxy (ISOVPE) was the earliest process to be developed for the fabrication of epitaxial mercury-cadmium telluride layers. Although the process was somewhat neglected in the previous period, mostly because of the appearance of metalorganic chemical vapour phase epitaxy and molecular-beam epitaxy, the results of the most recent investigations show that the application of this method can be expected in the second generation of photovoltaic (PV) or metal-insulator-semiconductor (MIS) detectors in the focal plane. This review paper presents the development of ISOVPE giving a complete theoretical model of the process, which is based on fundamental results in the field of phase diagrams of the (Hg,Cd)Te the interdiffusion of Hg and Cd, gas-phase transport, etc. Using the results of this theoretical model, a production system for ISOVPE was designed, in which the deposition process, the high-temperature annealing for composition homogenization and the low-temperature annealing for the achievement of the desired epitaxial-layer doping are all performed in the same cycle. Finally, the basic electrical and optical characteristics of ISOVPE layers are analysed. It is shown that in applications of the fabrication of PV and MIS detector arrays a full affirmation of this technology can be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. R. NORTON, Optical Engng. 31 (1991) 1649–1663.

    Google Scholar 

  2. D. A. SCRIBNER, M. R. KRUER and J. M. KILLIANY, Proc. IEEE 79 (1991) 66–85.

    Google Scholar 

  3. R. B. BAILEY, L. J. KOZLOWSKI, J. CHEN, D. Q. BUI, K. VURAL, D. D. EDWALL, R. V. GIL, A. B. Vander-WYCK, E. R. GERTNER and M. B. GUBALA, IEEE Trans. Electron. Devices 38 (1991) 1101–1109.

    Google Scholar 

  4. R. BALCERAK, J. F. GIBSON, W. A. GUTIERREZ and J. H. POLLARD, Optical Engng. 26 (1987) 191–200.

    Google Scholar 

  5. W. E. CHASE, Laser Focus World 3 (1992) 139–142.

    Google Scholar 

  6. G. L. DESTEFANIS, Semicond. Sci. Technol. C 6 (1991) 88–92.

    Google Scholar 

  7. W. E. TENNANT, C. A. COCKRUM, J. B. GILPIN, M. A. KINCH, M. B. REINE and R. P. RUTH, J. Vac. Sci. Technol. B 10 (1992) 1359–1369.

    Google Scholar 

  8. R. SPOKEN, S. SIVANANTHAN, K. K. MAGHARADI, G. MONTROY and M. BAUKERCHE, Appl. Phys. Lett. 55 (1989) 1879–1881.

    Google Scholar 

  9. R. KAY, R. BEAN and K. ZANIO, ibid. Appl. Phys. Lett. 51 (1987) 2211–2212.

  10. S. M. JOHNSON, M. H. KALISHER, W. L. AHLGREN, J. B. JAMES and C. A. COCKUM, ibid. Appl. Phys. Lett. 56 (1990) 946–948.

    Google Scholar 

  11. K. ZANIO, R. BEAN, R. MATTSON, P. VA, S. TAYLOR, D. MCINTIRE, C. ITO and M. CHU, ibid. Appl. Phys. Lett. 56 (1990) 1207–1209.

  12. W. L. AHLGREN, S. M. JOHNSON, E. J. SMITH, R. P. RUTH, B. C. JOHNSON, M. H. KALISHER, A. C. COCKRUM, T. W. JAMES, D. L. Arney, C. K. ZIEGLER and W. LICK, J. Vac. Sci. Technol. A 7 (1989) 3331–3337.

    Google Scholar 

  13. B. F. LEVINE, C. G. BETTEA, K. G. GLOGOVSKY, J. V. STAYT and R. E. LEIBENGYTH, Semicond. Sci. Technol. C 6 (1991) 114–119.

    Google Scholar 

  14. C. G. BETHEA, B. F. LEVINE, V. O. SHEN, R. R. ABBOT and S. J. HSEIH, Electron. Devices 38 (1991) 1118–1123.

    Google Scholar 

  15. O. K. WU and G. S. KAMATH, Semicond. Sci. Technol. C 6 (1991) 6–9.

    Google Scholar 

  16. C. C. WANG, J. Vac. Sci. Technol. B 9 (1991) 1740–1745.

    Google Scholar 

  17. G. N. PULTZ, P. W. NORTON, E. R. KRUEGER and M. B. REINE, ibid. J. Vac. Sci. Technol. B 9 (1991) 1724–1730.

    Google Scholar 

  18. T. L. KOCH, J. H. DE LOO, M. H. KALISHER and J. D. PHILLIPS, IEEE Trans. Ele Dev. 32 (1985) 1592–1598.

    Google Scholar 

  19. J. C. BEAN, Proc. IEEE 80 (1992) 571–586.

    Google Scholar 

  20. Z. DJURIC, Z. JAKSIC, Z. DJINOVIC, M. MATIC and Z. LAZIC, Microelectron. J. 25 (1994) 99–114.

    Google Scholar 

  21. J. PIOTROWSKI, W. GALUS and M. GRUDZIEN, Infrared Phys. 31 (1991) 1–48.

    Google Scholar 

  22. Z. DJURIC, J. PIOTROWSKI, Z. JAKSIC and Z. Djinovic, Electron. Lett. 24 (1988) 1590–1591.

    Google Scholar 

  23. R. KORENSTEIN and B. MACLEOD, J. Cryst. Growth 86 (1988) 382–385.

    Google Scholar 

  24. H. SITTER, K. LISCHKA and W. FACSCHINGER, ibid. J. Cryst. Growth 86 (1988) 379–381.

    Google Scholar 

  25. S. B. LEE, L. K. MAGEL, F. S. TANG, D. A. STEVENSON, J. H. TREGILGAS, M. GOODWIN and R. L. STRONG, J. Vac. Sci. Technol. A 8 (1990) 1098–1102.

    Google Scholar 

  26. S. B. LEE, D. KIM and D. A. STEVENSON, ibid. J. Vac. Sci. Technol. A B 9 (1991) 1639–1645.

    Google Scholar 

  27. H. RODOT, J. HENOC, Compt. Rend. 256 (1963) 1954.

    Google Scholar 

  28. F. BAILLY, G. COHEN-SOLAL and Y. MARFAING, ibid. Compt. Rend. 257 (1963) 103.

    Google Scholar 

  29. G. COHEN-SOLAL, Y. MARFAING, F. BAILLY and M. RODOT, Compt. Rend. Acad. Sci. Paris 261 (1965) 931.

    Google Scholar 

  30. Idem. G. COHEN-SOLAL, Y. MARFAING, F. BAILLY and M. RODOT, Rev. de Physique Appliquee 1 (1966) 11–17.

  31. Y. MARFAING, G. COHEN-SOLAL and F. BAILLY, Proceedings of an International Conference on Crystal Growth (Boston), edited by H. C. Paiser, (Pergamon Press, New York, 1966) pp. 549–622.

    Google Scholar 

  32. F. BAILLY, Y. MARFAING, G. COHEN-SOLAL and J. MELNGAILIS, J. Physique (1967) pp. 573–581.

  33. F. BAILLY, G. COHEN-SUPOLAL, L. SVOB and Y. MARFAING, Compt. Rend. Acad. Sci. Paris 269 (1969) 456–459.

    Google Scholar 

  34. G. S. ALMASI and A C. SMITH, J. Appl. Phys. 39 (1968) 233–245.

    Google Scholar 

  35. O. N. TUFTE and E. W. STELZER, ibid. J. Appl. Phys. 40 (1969) 4559–4568.

    Google Scholar 

  36. J. PIOTROWSKI, Electron. Technol. 5 (1972) 87–89.

    Google Scholar 

  37. Z. NOWAK, J. PIOTROWSKI, T. PIOTROWSKI and J. SADOWSKI, Thin Solid Films 52 (1978) 405–413.

    Google Scholar 

  38. F. BAILLY, L. SVOB, G. COHEN-SOLAL and R. TRIBOULET, J. Appl. Phys. 46 (1975) 4244–4250.

    Google Scholar 

  39. L. SVOB, Y. MARFAING, R. TRIBOULET, F. BAILLY and G. COHEN-SOLAL, ibid. J. Appl. Phys. 46 (1975) 4251–4

  40. P. BECLA, E. DUDZIAK and J. M. PAWLIKOWSKI, Mater. Sci. 3 (1977) 27–33.

    Google Scholar 

  41. J. M. PAWLIKOWSKI and P. BECLA, Phys. Status Solidi (a) 32 (1975) 639–646.

    Google Scholar 

  42. J. M. PAWLIKOWSKI, Thin Solid Films 44 (1977) 241–276.

    Google Scholar 

  43. E. DUDZIAK, L. JEDRAL and P. BECLA, Phys. Status Solidi (b) 98 (1980) 651–659.

    Google Scholar 

  44. A. ROGALSKI and J. PIOTROWSKI, “Progress in quantum electronics”, edited by T. S. Moss (1989).

  45. P. BECLA and J. PAWLIKOWSKI, Infrared Phys. 16 (1976) 457–464.

    Google Scholar 

  46. L. A. BOVINA, V. P. MESTCHERAKOVA, J. S. BANIN and V. I. STAFEEV, Fiz. Tekh. Poluprov. 7 (1973) 40–44.

    Google Scholar 

  47. L. A. BOVINA, V. P. MESTCHERAKOVA, L. K. KLYUKIN and V. I. STAFEEV, ibid. Fiz. Tekh. Poluprov. 7 (1973) 2301–2304.

    Google Scholar 

  48. A. V. VANYUKOV, E. A. MIKOLYUK, I. I. KROTOV, Yu. A. FIGEL'SON and V. T. YAKOVLEVA, Neorganicheskie material'i 11 (1975) 1961–1966.

    Google Scholar 

  49. P. BECLA, J. LAGOWSKI, H. C. GATOS and H. RUDE, J. Electrochem. Soc. 128 (1981) 1171–1173.

    Google Scholar 

  50. P. BECLA, J. LAGOWSKI and H. C. GATOS, ibid. J. Electrochem. Soc. 129 (1982) 1103–1105.

    Google Scholar 

  51. P. BECLA, J. LAGOWSKI, H. C. GATOS and L. JEDRAL, ibid. J. Electrochem. Soc. 129 (1982) 2855–2857.

  52. P. BECLA, P. A. WOLF, R. L. AGGARWAL and S. Y. YUAN, J. Vac. Sci. Technol. A 3 (1985) 119–123.

    Google Scholar 

  53. D. L. KAISER and P. BECLA, Mater. Rec. Soc. Symp. Proc. 90 (1987) 397–404.

    Google Scholar 

  54. S. H. SHIN and J. G. PASKO, Appl. Phys. Lett. 44 (1984) 423–425.

    Google Scholar 

  55. R. A. REIDEL, E. G. GERTNER, D. D. EDWALL and W. E. TENNANT, ibid. Appl. Phys. Lett. 46 (1985) 64–66.

    Google Scholar 

  56. E. H. GERTNER, S. H. SHIN, D. D. EDWALL, L. O. BUBULAC, D. S. LO and W. E. TENNANT, ibid. Appl. Phys. Lett. 46 851–853.

  57. S. H. SHIN, E. R. GERTNER, J. G. PASKO and W. E. TENNANT, J. Appl. Phys. 57 (1985) 4721–4726.

    Google Scholar 

  58. Y. NEMIROVSKY and A. KEPTEN, J. Electron. Mater. 13 (1984) 867–895.

    Google Scholar 

  59. E. SAND, D. LEVY and Y. NEMIROVSKY, Appl. Phys. Lett. 46 (1985) 501–503.

    Google Scholar 

  60. B. E. Deal and A. S. GROVE, J. Appl. Phys. 36 (1965) 3770–3778.

    Google Scholar 

  61. J. PIOTROWSKI, Z. DJURIC, W. GALUS, V. JOVIC, M. GRUDZIEN, Z. DJINOVIC and Z. NOVAK, J. Cryst. Growth 83 (1987) 122–126.

    Google Scholar 

  62. J. G. FLEMING and D. A. STEVENSON, ibid. J. Cryst. Growth 82 (1987) 621–627.

    Google Scholar 

  63. Idem. J. G. FLEMING and D. A. STEVENSON, Phys. Status Solidi (a) 105 (1987) 77–85.

  64. J. G. FLEMING and D. A. STEVENSON, J. Vac. Sci. Technol. A 5 (1987) 3383.

    Google Scholar 

  65. J. G. FLEMING, L. J. FARTHING and D. A. STEVENSON, J. Cryst. Growth 86 (1988) 506–510.

    Google Scholar 

  66. M. F. S. TANG and D. A. STEVENSON, J. Vac. Sci. Technol. A 5 (1987) 3124–3128.

    Google Scholar 

  67. Idem. M. F. S. TANG and D. A. STEVENSON, Appl. Phys. Lett. 50 (1987) 1272–1274.

  68. S. FANG, L. J. FARTHING, M. F. S. TANG and D. A. STEVENSON, J. Vac. Sci. Technol. A 8 (1990) 1120–1126.

    Google Scholar 

  69. D. A. STEVENSON and M. F. S. TANG, J. Vac. Sci. B 9 (1991) 1615–1624.

    Google Scholar 

  70. Z. DJURIC and J. PIOTROWSKI, Appl. Phys. Lett. 51 (1987) 1699–1701.

    Google Scholar 

  71. Z. DJURIC, Z. DJINOVIC, Z. LAZIC and J. PIOTROWSKI, J. Electron. Mater. 17 (1988) 223–228.

    Google Scholar 

  72. Z. DJINOVIC, Z. DJURIC, Z. JAKSIC, F. KERMENDI and R. ROKNIC, J. Cryst. Growth 108 (1991) 710–718.

    Google Scholar 

  73. J. SAVOIE, S. FURUKAWA, B. SAWA and T. TANAKA, Jpn. J. Appl. Phys. 12 (1973) 1259–1260.

    Google Scholar 

  74. M. H. KALISHER, P. E. HERNING, Proceedings of a Electronics Materials Conference, Santa Barbara, CA, 20–22 June, 1984.

  75. O. DE MELO, A. ATTOLINI, F. LECCABUE, R. PANIZZIERI, C. PELOSI and G. SALVIATI, J. Cryst. Growth 98 (1989) 704–710.

    Google Scholar 

  76. R. F. BREBRICK, ibid. J. Cryst. Growth 86 (1988) 39–48.

    Google Scholar 

  77. C. H. SU, P. K. LIAO, R. F. BREBRICK, J. Electrochem. Soc. 132 (1985) 942–949.

    Google Scholar 

  78. A. N. MATVEEV, in Molekularnaya fizika (Vysshaya Shkola, Moscow, 1981).

    Google Scholar 

  79. M. M. VIKTOROV, in Metod'i v'ichisleniya fizikohemicheskih velichin i prikladn'ie rascheti (Himiya, Leningrad, 1977).

    Google Scholar 

  80. A. S. GROVE, in Physics and technology of semiconductor devices (Wiley, New York, 1967).

    Google Scholar 

  81. T. TUNG, C. H. SU, P. K. LIAO, R. F. BREBRICK, J. Vac. Sci. Technol. 21 (1982) 117–124.

    Google Scholar 

  82. R. F. BREBRICK, C. H. SU, P. K. LIAO, in “Semiconductors and semimetals”, edited by R. K. Willardson and A. C. Beer (Academic Pr 1983) p. 19.

  83. R. A. SWALIN, in Thermodynamics of solids (Wiley, New York, 1972) p. 127.

    Google Scholar 

  84. H. R. VYDYANATH, J. Appl. Phys. 59 (1986) 958–960.

    Google Scholar 

  85. J. C. BRICE, Prog. Crystal Growth Charact. 13 (1986) 39–61.

    Google Scholar 

  86. R. F. BREBRICK, A. J. STRAUSS, J. Phys. Chem. Solids 26 (1965) 898–1002.

    Google Scholar 

  87. J. G. LO, H. LAN, J. Y. CHEN, L. S. LU, Jpn. J. Appl. Phys. 30 (1991) 1770–1774.

    Google Scholar 

  88. B. I. BOLTAKS, in “Difuziya v poluprovodnikah” (Moscow, 1961).

  89. Idem. B. I. BOLTAKS, in “Difuziya i tochechnie defekt'i v poluprovodnikah” (Nauka, Moscow, 1972).

  90. J. P. STARK, in “Solid state diffusion” (Wiley, 1976).

  91. A. S. GROVE, A. RODER and C. T. SAH, J. Appl. Phys. 36 (1965) 802–810.

    Google Scholar 

  92. R. REIF, R. W. DUFFON, J. Electrochem. Soc. 128 (1981) 909–918.

    Google Scholar 

  93. V. LEUTE, H. M. SCHMIDTKE, W. STRASMANN, W. WINKING, Phys. Status Solidi (a) 67 (1981) 183–192.

    Google Scholar 

  94. A. F. WILLOUGHBY, Mater. Lett. 1 (1982) 58–60.

    Google Scholar 

  95. M. BROWN, A. F. WILLOUGHBY, J. Cryst. Growth 59 (1992) 27–39.

    Google Scholar 

  96. K. ZANIO, T. MASSOPUST, J. Elect. Mater. 15 (1986) 103–109.

    Google Scholar 

  97. D. SHAW, J. Cryst. Growth 86 (1988) 778–796.

    Google Scholar 

  98. M. F. S. Tang, D. A. STEVENSON, J. Vac. Sci. Technol.A 7 (1989) 544–549.

    Google Scholar 

  99. J. C. ROSSOW, G. N. PAIN, S. R. GLANVILL, D. C. MCDONALD, J. Cryst. Growth 106 (1990) 673–682.

    Google Scholar 

  100. C. POBLA, R. GRANGER, S. ROLAND, R. TRIBOULET, ibid. J. Cryst. Growth 79 (1986) 515–518.

  101. R. GRANGER, C. POBLA, S. ROLLAND, R. TRIBOULET, 101 (1990) 261–265.

  102. K. MEINEL, M. KLAUA, Ch. AMMER, Phys. Status Solidi (a) 109 (1988) 525–529.

    Google Scholar 

  103. YA. E. GEGUZIN, in Diffuzionnaya zona (Nauka, Moscow, 1979).

    Google Scholar 

  104. M. F. S. TANG, D. A. STEVENSON, J. Phys. Chem. Solids 51 (1990) 563–569.

    Google Scholar 

  105. H. R. VYDYANATH, J. Vac. Sci. Technol. B 9 (1991) 1716–1723.

    Google Scholar 

  106. M. ISHIKI, Y. MARUYAMA and S. TOBE, Jpn. J. Appl. Phys. A 31 (1992) 1842–1844.

    Google Scholar 

  107. T. C. HARMAN, J. Electron. Mater. 10, 6, pp. 1069–1084, 1981.

    Google Scholar 

  108. V. B. UFIMCEV and R. H. AKCHURIN, in Fizikohemicheskie osnov'e zhidkofaznoy epitaksii (Moscow, Metalurgiya, 1983) p. 168.

    Google Scholar 

  109. Z. DJURIC, V. JOVIC, Z. DJINOVIC, M. POPOVIC, R. ROKNIC and Z. JAKSIC, J. Mater. Sci. Mater. Electronics 2 (1991) 63–71.

    Google Scholar 

  110. K. T. CHEN, Y. G. SHA and R. BREBRICK, J. Vac. Sci. Technol. 8 (1990) 1086–1092.

    Google Scholar 

  111. Z. DJINOVIC, PhD thesis, University of Belgrade (1990).

  112. T. H. MYERS, N. C. G. TAYLOR, R. W. YANA, R. N. BICKNELL, J. W. COOK Jr and J. F. SCHETZINA, J. Vac. Sci. Technol. A 3 (1985) 71–75.

    Google Scholar 

  113. A. DRAND, US Patent 4435 224 (1984).

  114. Z. DJURIC, Z. DJINOVIC, Z. JAKSIC and D. TOTOVSKI, Electron. Lett. 26 (1990) 1005–1006.

    Google Scholar 

  115. C. L. JONES, M. J. T. QUELCH, P. CAPPER and J. J. GOSNEY, J. Appl. Phys. 53 (1982) 9080–9092.

    Google Scholar 

  116. P. CAPPER, B. C. EASTON, P. A. C. WHIFFIN and D. C. MAXEY, J. Cryst. Growth 79 (1986) 508–514.

    Google Scholar 

  117. P. CAPPER, J. Vac. Sci. Technol. B 9 (1991) 1667–1681.

    Google Scholar 

  118. C. E. JONES, K. JAMES, J. MERZ, R. BRAUNSTEIN, M. BURD, M. ECTEMADI, S. HUTTON and J. DRUMHELLER, ibid. J. Vac. Sci. Technol. B A 3 (1985) 131–137.

  119. K. K. PARAT, N. R. TASKAR, I. B. BRAT and S. K. GHANDI, J. Cryst. Growth 106 (1990) 513–523.

    Google Scholar 

  120. J. PIOTROWSKI, Z. NOVAK, M. GRUDZIEN, W. GALUS, K. ADAMIEC, Z. DJURIC, V. JOVIC and Z. DJINOVIC, Thin Solid Films 161 (1988) 157–169.

    Google Scholar 

  121. L. F. LOU and W. H. FRYE, J. Appl Phys. 56 (1984) 2253–2267.

    Google Scholar 

  122. J. PIOTROWSKI, Private communication.

  123. J. A. MROCZKOWSKI and D. A. NELSON, J. Appl. Phys. 54 (1983) 2041–2051.

    Google Scholar 

  124. W. F. H. MICKLETHWAITE, ibid. J. Appl. Phys. 63 (1988) 2382–2390.

    Google Scholar 

  125. C. A. HOUGEN, ibid. J. Appl. Phys. 66 (1989) 3763–3766.

    Google Scholar 

  126. K. P. MÖLLMAN and H. KISSEL, Semicond. Sci. Technol. 6 (1991) 1167–1169.

    Google Scholar 

  127. K. H. HERRMANN, D. GENZOW, A. F. RUDOLPH, T. SCULZE and L. PARTHIER, Superlattices Microstructures 9 (1991) 274–279.

    Google Scholar 

  128. E. FINKMAN and Y. NEMIROVSKY, J. Appl. Phys. 50 (1979) 4356–4361.

    Google Scholar 

  129. M. D. BLUE, Phys. Rev. A 134 (1964) 226–236.

    Google Scholar 

  130. W. W. ANDERSON, Infrared Phys. 20 (1980) 363–372.

    Google Scholar 

  131. E. FINKMAN and S. E. SCHACHAM, J. Appl. Phys. 56 (1984) 2896–2900.

    Google Scholar 

  132. JUN-HAO CHU, ZHENG-YU MI and DING YUAN TANG, ibid. J. Appl. Phys. 71 (1992) 3955–3961.

  133. E. O. KANE, J. Phys. Chem. Solids 1 (1957) 249–261.

    Google Scholar 

  134. T. S. MOSS, G. J. BURRELL and B. ELLIS, in Semiconductor optoelectronics (London, Butterworth 1973).

    Google Scholar 

  135. P. H. BERNING, in “Physics of thin films”, edited by G. Hass, Vol. 1 (Academic Press, 1963) p. 69.

  136. T. BROSSAT, J. Cryst. Growth 72 (1985) pp. 280–284.

    Google Scholar 

  137. D. L. SPEARS, “IRIS specialty group on infrared detectors”, (1982) Proceedings of IRIS specialty group on IR detectors, San Diego, USA, pp. 1–15.

  138. Idem. D. L. SPEARS Proceedings of IRIS Active Systems (1984) pp. 331–349.

  139. W. S. LAWSON, S. NIELSON, E. H. PUTLEY and A. S. YOUNG, J. Phys. Chem. Solids 9 (1959) 325–329.

    Google Scholar 

  140. W. F. H. MIKCLEWAITE, in “Mercury cadmium telluride” edited by R. K. WILLARDSON and A. C. BEER, Semiconductors and Semimetals (Academic Press, 1981) p. 18.

  141. P. W. KRUSE, in ibid. “Mercury cadmium telluride” (Academic Press, 1981).

  142. E. R. GERTNER, Ann. Rev. Mater. Sci. (1985) 303–328.

  143. M. A. HERMAN and M. PESSA, J. Appl. Phys. 57 (1985) 2671–2694.

    Google Scholar 

  144. R. DORNHAUS and G. NIMTZ, in The properties and applications of the Hg1−x Cd x T alloy system, Springer Tracts in Modern Physics, Vol. 78 (Springer Verlag, Berlin, 1976).

    Google Scholar 

  145. “Properties of Mercury cadmium telluride”, edited by J. Brice and P. Capper, EMIS Datareview Series No. 3, INSPEC (The Institution of Electrical Engineers, London, 1987).

  146. S. M. JOHNSON, D. R. RICHER, J. P. ROSBECK, S. M. TAYLOR and M. E. BOYD, J. Vac. Sci. Technol. B 10, 4, (1992) 1499–1506.

    Google Scholar 

  147. Z. DJURIC and J. PIOTROWSKI, Electron. Lett. 26 (1990) 1689–1691.

    Google Scholar 

  148. Idem. Z. DJURIC and J. PIOTROWSKI, Optical Engng. 31, 9, pp. 1955–1960, 1992.

  149. S. S. BOLGOV, V. K. MALYUTENKO, V. I. PUMA, A. P. SAVENKO and A. E. YUNOVI, Fizika Tekhnika Polup-Rovodnikov 24 (1990) 1677–1681.

    Google Scholar 

  150. A. SZILAGIJI and M. N. GRIMBERGEN, J. Vac. Sci. Technol. 4 (1986) 2200–2204.

    Google Scholar 

  151. H. TAKIGAWA, M. YOSHIKAWA and T. MAEKAWA, J. Cryst. Growth 86 (1988) 446–451.

    Google Scholar 

  152. D. CHANDRA,J. H. TREGILGAS and M. W. GOODWIN, J. Vac. Sci. Technol. B 9 (1991) 1852–1857.

    Google Scholar 

  153. P. M. PETROFF, Semicond. Semimet. A 22.

  154. M. YOSHIKAWA, J. Appl. Phys. 63 (1988) 1533–1540.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djuric, Z. Isothermal vapour-phase epitaxy of mercury-cadmium telluride (Hg,Cd)Te. J Mater Sci: Mater Electron 6, 187–218 (1995). https://doi.org/10.1007/BF00187200

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00187200

Keywords

Navigation