Skip to main content
Log in

Intensity-related changes in cochlear blood flow in the guinea pig during and following acoustic exposure

  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Summary

This study examined the effects of acoustic exposure at different intensities on cochlear blood flow (CBF) using laser Doppler flowmetry. CBF was measured in anesthetized guinea pigs exposed to either a 10 kHz pure tone at 125, 105, or 90 dB SPL, or wide-band noise at 85 dB SPL for 1 h. Mean arterial blood pressure and heart rate were recorded continuously. Arterial acid-base status, cochlear temperature, cochlear microphonics (CM), and compound action potentials (CAP) were measured before and after exposure. There was a small, but significant, steady decline in basal CBF after 40 min loud sound exposure (125 dB SPL), but no change in basal CBF occurred with the lower intensities (85–105 dB SPL). In contrast, there was a significant increase in apical CBF after 1 h exposure to either moderate wideband noise (85 dB SPL) or a 10 kHz tone at 105 dB SPL. These changes persisted during a 20-min post-exposure period. In most cases, the cochlear temperature and cardiorespiratory variables monitored remained unchanged during and after the exposures as compared to the controls. CM and CAP amplitudes showed extensive losses after acoustic overstimulation (125 dB SPL), but no permanent changes were found at the lower intensities used. The present findings confirm the occurrence of intensity-related effects of acoustic exposure on the cochlear microcirculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angelborg C, Hultcrantz E, Beausang-Linder M (1979) The cochlear blood flow in relation to noise and cervical sympathectomy. Adv Otorhinolaryngol 25:41–48

    Google Scholar 

  2. Axelsson A, Vertes D (1982) Histological findings in cochlear vessels after noise. In: Hamernik RP, Henderson D, Salvi R (eds) New perspectives on noise induced hearing loss. Raven Press, New York, pp 49–67

    Google Scholar 

  3. Bohne B-D, Rolle W, Strobl R, Ulrich W-D (1973) Mantel-Thermoelemente zur Temperaturmessung in Medizin and Biologie. Medizintechnik 13:13–16

    Google Scholar 

  4. Canlon B, Schacht J (1983) Acoustic stimulation alters deoxyclucose uptake in the mouse cochlea and inferior colliculus. Hear Res 10:217–226

    Google Scholar 

  5. Canlon B, Takada A, Schacht J (1984) Glucose utilization in the auditory system: cochlear dysfunctions and species differences. Comp Biochem Physiol 78A:43–47

    Google Scholar 

  6. Dengerink HA, Axelsson A, Miller JM, Wright JW (1984) The effect of noise and carbogen on cochlear vasculature. Acta Otolaryngol(Stockh) 98:81–88

    Google Scholar 

  7. Dengerink HA, Miller JM, Axelsson A, Vertes D, Dalfsen P van (1985) The recovery of vascular changes following brief noise exposure. Acta Otolaryngol (Stockh) 100:19–25

    Google Scholar 

  8. Goodwin PC, Ryan AF, Sharp FR, Woolf NK, Davidson TM (1984) Cochlear deoxyglucose uptake: relationship to stimulus intensity. Hear Res 15:215–224

    Google Scholar 

  9. Haupt H, Scheibe F, Ludwig C (1988) Oxygen tension in the perilymph of sound-exposed guinea pigs. In: Loebe L-P, Lotz P (eds) VIII International Cochlea Symposium 1987. MartinLuther-Universität, Wiss. Beitrage 1988/15 (R 104), Halle (Saale), Germany, pp 93–95

    Google Scholar 

  10. Haupt H, Scheibe F, Ludwig C, Petzold D (1991) Measurements of perilymphatic oxygen tension in guinea pigs exposed to loud sound. Eur Arch Otorhinolaryngol 248:413–416

    Google Scholar 

  11. Hawkins JE (1971) The role of vasoconstriction in noise-induced hearing loss. Ann Otol Rhinol Laryngol 80:903–913

    Google Scholar 

  12. Hultcrantz E (1979) The effect of noise on cochlear blood flow in the conscious rabbit. Acta Physiol Scand 106:29–37

    Google Scholar 

  13. Hulterantz E, Angelborg C, Beausang-Linder M (1979) Noise and cochlear blood flow. Arch Otorhinolaryngol 224:103–106

    Google Scholar 

  14. Kawata S, Morimitsu T, Matsuo K, Suga F, Morizono T, Nakashima T, Matsumoto I, Nagashima H (1967) Relationship between blood flow and bioelectric functions of the cochlea. Otol Fukuoka 13 [Suppl 1]:9–28

    Google Scholar 

  15. Maass B, Baumgdrtl H, Lübbers DW (1978) Lokale PO2- und PH2-Messungen mit Mikrokoaxialnadelelektroden an der Basalwindung der Katzencochlea nach akuter oberer zervikaler Sympathektomie. Arch Otorhinolaryngol 221:269–284

    Google Scholar 

  16. Meyer P, Kuhl K-D, Schmidt R, Grützmacher W (1991) Guinea pig cochlear blood flow under definite sound exposure — hydrogen clearance measurement. ORL 53: 327–330

    Google Scholar 

  17. Misrahy GA, Arnold JE, Mundie JR, Shinabarger EW, Garwood VP (1958) Genesis of endolymphatic hypoxia following acoustic trauma. J Acoust Soc Am 30:1082–1088

    Google Scholar 

  18. Morimitsu T, Matsuo K, Suga F (1965) Behavior of the cochlear blood flow. Ann Otol Rhinol Laryngol 74:22–32

    Google Scholar 

  19. Morizono T (1966) Influences of electric hypothalamic stimulation upon cerebral and cochlear micro blood circulation. Otol Fukuoka 12:5–32

    Google Scholar 

  20. Okamoto A, Tamura T, Yokoyama K, Kobayashi N, Hasegawa M (1990) Effect of loud sound exposure on the cochlear blood flow. Acta Otolaryngol (Stockh) 109:378–382

    Google Scholar 

  21. Perlman HB, Kimura R (1962) Cochlear blood flow in acoustic trauma. Acta Otolaryngol (Stockh) 54:99–110

    Google Scholar 

  22. Prazma J, Rodgers GK, Pillsbury HC (1983) Cochlear blood flow: effect of noise. Arch Otolaryngol 109:611–615

    Google Scholar 

  23. Prazma J, Vance SG, Bolster DE, Pillsbury HC, Postma DS (1987) Cochlear blood flow: the effect of noise at 60 minutes' exposure. Arch Otolaryngol Head Neck Surg 113:36–39

    Google Scholar 

  24. Quirk WS, Shapiro BD, Miller JM, Nuttall AL (1991) Noise-induced changes in red blood cell velocity in lateral wall vessels of the rat cochlea. Hear Res 52:217–224

    Google Scholar 

  25. Ryan AF, Goodwin P, Woolf NK, Sharp F (1982) Auditory stimulation alters the pattern of 2-deoxyglucose uptake in the inner ear. Brain Res 234:213–225

    Google Scholar 

  26. Ryan AF, Axelsson A, Myers R, Woolf NK (1988) Changes in cochlear blood flow during acoustic stimulation as determined by 14C-iodoantipyrine autoradiography. Acta Otolaryngol (Stockh) 105:232–241

    Google Scholar 

  27. Scheibe F, Haupt H, Ludwig C (1986) Perilymphatic oxygen tension and cochlear blood flow in guinea pigs exposed to loud sound (abstract). 23rd Workshop on Inner Ear Biology, Berlin, Germany. ENT Department Charité, Humboldt University, Berlin, p 46

    Google Scholar 

  28. Scheibe F, Haupt H, Ludwig C (1988) Laser Doppler measurement of cochlear blood flow during sound exposure. In: Loebe L-P, Lotz P (eds) VIII International Cochlea Symposium 1987. Martin-Luther-Universitat, Wiss. Beiträge 1988/15 (R 104), Halle (Saale), Germany, pp 87–89

    Google Scholar 

  29. Scheibe F, Ludwig C, Haupt H, Flemming B (1989) Physiologische Parameter des Meerschweinchens unter Langzeitnarkose mit kontrollierter Beatmung. Z Versuchstierkd 32:25–31

    Google Scholar 

  30. Scheibe F, Haupt H, Nuttall AL, Ludwig C (1990) Laser Doppler measurements of cochlear blood flow during loud sound presentation. Eur Arch Otorhinolaryngol 247:84–86

    Google Scholar 

  31. Scheibe F, Haupt H, Ludwig C (1992) Intensity-dependent changes in oxygenation of cochlear perilymph during acoustic exposure. Hear Res 63: 19–25

    Google Scholar 

  32. Smith DI, Lawrence M, Hawkins JE (1985) Effects of noise and quinine on the vessels of the stria vascularis: an image analysis study. Am J Otolaryngol 6:280–289

    Google Scholar 

  33. Suga F (1962) Cochlear functions and cochlear blood flow in acoustic trauma. Otol Fukuoka 8 [Suppl 3]:187–202

    Google Scholar 

  34. Thorne PR, Nuttall AL (1986) Changes in blood flow and oxygen tension in the guinea pig cochlea during loud sound exposure (abstract). 23rd Workshop on Inner Ear Biology; Berlin, Germany. ENT Department Charité, Humboldt University, Berlin, p 43

    Google Scholar 

  35. Thorne PR, Nuttall AL (1987) Laser Doppler measurements of cochlear blood flow during loud sound exposure in the guinea pig. Hear Res 27:1–10

    Google Scholar 

  36. Vertes D, Axelsson A, Miller JM, Lidén G (1981) Cochlear vascular and electrophysiological effects in the guinea pig to 4kHz pure tones of different durations and intensities. Acta Otolaryngol (Stockh) 92:15–24

    Google Scholar 

  37. Wagner H, Berndt H, Gerhardt H-J (1974) Zur Erzeugung kalibrierter Schallpegel am Trommelfell des Meerschweinchens. Arch Otorhinolaryngol 206:283–292

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. H. J. Gerhardt on his 65th birthday

Correspondence to: F. Scheibe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheibe, F., Haupt, H. & Ludwig, C. Intensity-related changes in cochlear blood flow in the guinea pig during and following acoustic exposure. Eur Arch Otorhinolaryngol 250, 281–285 (1993). https://doi.org/10.1007/BF00186226

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00186226

Key words

Navigation