Skip to main content
Log in

Immunohistochemistry of cholinergic receptors

  • Review Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

Acetylcholine and its receptors are involved in a variety of important signal transduction processes. As shown here paradigmatically for the human neuromuscular junction and the cerebral cortex, acetylcholine receptors can be visualized immunohistochemically at the cellular and subcellular level under physiological and pathological conditions. At normal motor endplates nicotinic cholinoceptors are localized at the surface of the postsynaptic junctional folds. In myasthenic syndromes investigation of muscle biopsies enables the diagnosis of receptor deficiencies at the ultrastructural level. In normal cerebral cortex pyramidal neurons are equipped with both nicotinic and muscarinic acetylcholine receptors localized to postsynaptic densities. In neuropsychiatric diseases cholinoceptor expression can be monitored at the cellular level by quantititative assessment of immunolabeled cortical neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • André C, DeBacker JP, Guillet JP, Vanderheyden JG, Vauquelin P, Strosberg AD (1983) Purification of muscarinic acetylcholine receptors by affinity chromatography. EMBO J 2:499–504

    Google Scholar 

  • André C, Guillet JG, DeBacker JP, Vanderheyden P, Hoebeke J, Strosberg AD (1984) Monoclonal antibodies against the native or denaturated forms of muscarinic acetylcholine receptor. EMBO J 3:17–21

    Google Scholar 

  • André C, Marullo S, Guillet JG, Convents A, Lauwereys M, Kaveri S, Hoebeke J, Strosberg AD (1987) Immunochemical studies of the muscarinic acetylcholine receptor. J Recept Res 7:89–103

    Google Scholar 

  • Askmark H, Gillberg P-G, Aquilonius S-M (1985) Autoradiographic visualization of extrajunctional acetylcholine receptors in whole human biceps brachii muscle. Changes in amyotrophic lateral sclerosis. Acta Neurol Scand 72:344–347

    Google Scholar 

  • Balfour DJK (1982) The effects of nicotine on brain neurotransmitter systems. Pharmacol Ther 16:269–282

    Google Scholar 

  • Barchi RL (1989) Biochemical pathology of the neuromuscular junction. In: Siegel GJ, Agranoff BW, Albers RW, Molinoff PB (eds) Basic neurochemistry. 4th edn. Raven Press, New York, pp 629–645

    Google Scholar 

  • Bartus RT, Dean III RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–417

    Google Scholar 

  • Boulter J, Connolly J, Deneris E, Goldman D, Heinemann S, Patrick J (1987) Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family. Proc Natl Acad Sci USA 84:7763–7767

    Google Scholar 

  • Buckley NJ, Bonner TI, Brann MR (1989a) Localization of a family of muscarinic receptor mRNAs in rat brain. J Neurosci 8:4646–4652

    Google Scholar 

  • Buckley NJ, Bonner TI, Buckley CM, Brann MR (1989b) Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol Pharmacol 35:469–476

    Google Scholar 

  • Chang CC, Chen TF, Chuang S-T (1973) Influence of chronic neostigmine treatment on the number of acetylcholine receptors and the release of acetylcholine from the rat diaphragm. J Physiol (Lond) 230:613–618

    Google Scholar 

  • Changeux J-P, Kasai M, Lee C-Y (1970) Use of a snake venom toxin to characterize the cholinergic receptor protein. Proc Natl Acad Sci USA 67:1241–1247

    Google Scholar 

  • Chase BA, Holliday J, Reese JH, Chun LLY, Hawrot E (1987) Monoclonal antibodies with defined specificities for Torpedo nicotinic acetylcholine receptor cross-react with Drosophila neural tissue. Neuroscience 21:959–976

    Google Scholar 

  • Chiappinelli VA (1985) Actions of snake venom toxins on neuronal nicotinic receptors and other neuronal receptors. Pharmacol Ther 31:l-32

    Google Scholar 

  • Chini B, Tarroni P, Rubboli F, Raimondi E, Clementi F (1991) Nicotinic acetylcholine receptors in the human nervous system. In: Becker R, Giacobini E (eds) Cholinergic basis for Alzheimer therapy. Birkhäuser, Boston, pp 98–106

    Google Scholar 

  • Clarke PBS (1987) Recent progress in identifying nicotinic cholinoceptors in mammalian brain. Trends Pharmacol Sci 8:32–35

    Google Scholar 

  • Clarke PBS, Schwartz RD, Paul SM, Pert CB, Pert A (1985) Nicotinic binding in rat brain: autoradiographic comparison of [3H]-acetylcholine, [3H]-nicotine, and [125I]-α-bungarotoxin. J Neurosci 51:307–315

    Google Scholar 

  • Conti-Tronconi BM, Diethelm BM, Wu X, Tang F, Bertazzon T, Schröder B, Reinhardt-Maelicke S, Maelicke A (1991) α-bungarotoxin and the competing antibody WF6 interact with different amino acids within the same cholinergic subsite. Biochemistry 30:2575–2584

    Google Scholar 

  • Cortés R, Probst A, Palacios JM (1987) Quantitative light microscopic autoradiographic localization of cholinergic muscarinic receptors in the human brain: Forebrain, Neuroscience 20:65–107

    Google Scholar 

  • Dale HH (1914) The action of certain esters and ethers of choline, and their relation to muscarine. J Pharmacol 61:47–190

    Google Scholar 

  • Dale HH, Feldberg W, Vogt M (1936) Release of acetylcholine at voluntary motor nerve endings. J Physiol (Lond) 86:353–380

    Google Scholar 

  • Dani JA (1989) Site-directed mutagenesis and single-channel currents define the ionic channel of the nicotinic acetylcholine receptor. Trends Neurosci, 12:125–128

    Google Scholar 

  • DeRobertis E, Pellegrino de Iraldi A, Rodriguez DeLores Arnaiz G, Salganicoff L (1962) Cholinergic and non-cholinergic nerve endings in rat brain. I. Isolation and subcellular distribution of acetylcholine and acetylcholinesterase. J Neurochem 9:23–35

    Google Scholar 

  • DeRobertis E, Rodriguez DeLores Arnaiz G, Salganicoff L, Pellegrino de Iraldi A, Zieher LM (1963) Isolation of synaptic vesicles and structural organization of the acetylcholine system within brain nerve endings. J Neurochem 10:225–235

    Google Scholar 

  • Deutch AY, Holliday J, Roth RH, Chun LLY, Hawrot E (1987) Immunohistochemical localization of a neuronal nicotinic acetylcholine receptor in mammalian brain. Proc Natl Acad Sci USA 84:8697–8701

    Google Scholar 

  • Dolly JO, Barnard EA (1977) Purification and characterization of an acetylcholine receptor from mammalian skeletal muscle. Biochemistry 16:5053–5060

    Google Scholar 

  • Eckenstein FP, Baughman RW, Quinn J (1988) An anatomical study of cholinergic innervation in rat cerebral cortex. Neuroscience 25:457–474

    Google Scholar 

  • Egan TM, North RA (1986) Acetylcholine hyperpolarizes central neurones by acting on a M2 muscarinic receptor. Nature 319:405–407

    Google Scholar 

  • Engel AG, Lambert EH, Gomez MR (1977) A new myasthenic syndrome with endplate acetylcholinesterase deficiency, small nerve terminals and reduced acetylcholine release. Ann Neurol 1:315–320

    Google Scholar 

  • Feldberg W, Fessard A (1942) The cholinergic nature of the nerves of the electric organ of the Torpedo (Torpedo marmorata). J Physiol (Lond) 101:200–216

    Google Scholar 

  • Feldberg W, Gaddum JH (1934) The chemical transmitter at synapses in a sympathetic ganglion. J Physiol (Lond) 81:305–319

    Google Scholar 

  • Fels G, Plümer-Wilk R, Schreiber M, Maelicke A (1986) A monoclonal antibody interfering with binding and response of the acetylcholine receptor. J Biol Chem 261:15746–15754

    Google Scholar 

  • Giacobini E, DeSarno P, McIlhany M, Clark B (1988) The cholinergic receptor system in the frontal lobe of Alzheimer's patients. In: Clementi F, Gotti C, Sher E (eds) Nicotinic acetylcholine receptors in the nervous system. Springer, Berlin Heidelberg New York, pp 367–378

    Google Scholar 

  • Gil DW, Wolfe BB (1985) Pirenzepine distinguishes between muscarinic receptor-mediated phosphoinositide breakdown and inhibition of adenylate cyclase. J Pharmacol Exp Ther 23:2608–2616

    Google Scholar 

  • Gotti C, Sher E, Chini B, Fornasari D, Esparis Ogando E, Clementi F (1988) The nicotinic receptors in the nervous system. Pharmacol Res Commun 20:637–662

    Google Scholar 

  • Harrison PJ, Barton AJL, Najlerahim A, McDonald B, Pearson RCA (1991) Increased muscarinic receptor messenger RNA in Alzheimer's disease temporal cortex demonstrated by in situ hybridization histochemistry. Mol Brain Res 9:15–21

    Google Scholar 

  • Hirschowitz BI, Hammer R, Giachetti R, Keirns JJ, Levine RR (eds) (1983) Subtypes of muscarinic receptors. Trends Pharmacol Sci [Suppl]: 1–103

  • Hornung JP, Hersh LB (1988) Cholinergic innervation of the human cerebral cortex: comparison between acetylcholinesterase histochemistry and choline acetyltransferase immunocytochemistry. Eur J Neurosci [Suppl 1]:244

  • Hosey MM (1992) Diversity of structure, signaling and regulation within the family of muscarinic cholinergic receptors. FASEB J 6:845–852

    Google Scholar 

  • Houser CR, Crawford GD, Barber RP, Salvaterra PM, Vaughn JE (1983) Organization and morphological characteristics of cholinergic neurons: an immunocytochemical study with a monoclonal antibody to choline acetyltransferase. Brain Res 266:97–119

    Google Scholar 

  • Houser CR, Crawford GD, Salvaterra PM, Vaughn JE (1985) Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: a study of cholinergic neurons and synapses. J Comp Neurol 234:17–34

    Google Scholar 

  • Huizen F van, Strosberg AD, Cynader MS (1988) Cellular and subcellular localisation of muscarinic acetylcholine receptors during postnatal development of cat visual cortex using immunocytochemical procedures. Develop Brain Res 44:296–301

    Google Scholar 

  • Jacob MH, Lindstrom JM, Berg DK (1986) Surface and intracellular distribution of a putative neuronal nicotine acetylcholine receptor. J Cell Biol 103:205–214

    Google Scholar 

  • Jennekens FGI, Hesselmans LFGM, Veldman H, Jansen ENH, Spaans F, Molenaar PC (1992) Deficiency of acetylcholine receptors in a case of endplate acetylcholineesterase deficiency: a histochemical investigation. Muscle Nerve 15:63–72

    Google Scholar 

  • Keller G-A, Tokuyasu KT, Dutton AH, Singer SJ (1984) An improved procedure for immunoelectron microscopy: ultrathin plastic embedding of immunolabeled ultrathin frozen sections. Proc Natl Acad Sci USA 81:5744–5747

    Google Scholar 

  • Krnjević K (1988) Central cholinergic transmission: the physiological evidence, In: Whittaker VP (ed) The cholinergic synapse. Handbook of experimental pharmacology, vol 86. Springer, Berlin Heidelberg New York, pp 633–662

    Google Scholar 

  • Kuhar JM, DeSouza EB, Unnerstall JR (1986) Neurotransmitter receptor mapping by autoradiography and other methods. Ann Rev Neurosci 9:27–59

    Google Scholar 

  • Langley JN (1905) On the reaction of cells and nerve-endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curare, J Physiol (Lond) 33:374–413

    Google Scholar 

  • Lee CY (1979) Recent advances in chemistry and pharmacology of snake toxins. In: Ceccarelli B, Clementi F (eds) Advances in cytopharmacoloy, vol 3. Raven Press, New York, pp 1–16

    Google Scholar 

  • Leiber D, Harbon S, Guillet J-G, André C, Strosberg AD (1984) Monoclonal antibodies to purified muscarinic receptor display agonist-like activity. Proc Natl Acad Sci USA 81:4331–4334

    Google Scholar 

  • Levey AI, Kitt CA, Heilman C, Fedor H, Edmunds SM, Price DL, Brann MR (1991) Immunocytochemical localization of muscarinic receptor proteins in rat and primate brain and colocalization in cholinergic neurons. Soc Neusosci Abstr 17:415

    Google Scholar 

  • Loewi O (1921) Über humorale Übertragbarkeit der Herznervenwirkung. I. Mitteilung. Pflügers Arch Gesamte Physiol 189:239–242

    Google Scholar 

  • Loewi O, Navratil E (1926) Über humorale Übertragbarkeit der Herznervenwirkung. X. Mitteilung. Über das Schicksal des Vagusstoffs. Pflügers Arch Gesamte Physiol 214:678–688

    Google Scholar 

  • Lysakowski A, Wainer BH, Bruce G, Hersh LB (1989) An atlas of the regional and laminar distribution of choline acetyltransferase immunoreactivity in rat cerebral cortex. Neuroscience 28:291–336

    Google Scholar 

  • MacIntosh FC, Oborin PE (1953) Release of acetylcholine from intact cerebral cortex. tAbstr XIX. Int Physiol Congr 580–581

  • Maelicke A (1988) Structure and function of the nicotinic acetylcholine receptors. In: Whittaker VP (ed) The cholinergic synapse. Handbook of experimental pharmacology, vol 86. Springer, Berlin Heidelberg New York, pp 267–313

    Google Scholar 

  • Marks R, Schröder H, Zilles K, Lindstrom J (1991) Die Verteilung nicotinischer Acetylcholinrezeporen im Cortex cerebri der Maus: Eine immunhistochemische Darstellung. Anat Anz Suppl 168:603–604

    Google Scholar 

  • Mason WT (1985) Staining of the magnocellular nuclei of the rat hypothalamus by a monoclonal antibody directed against the α-subunit of the nicotinic cholinergic receptor. Neurosci Lett 59:89–95

    Google Scholar 

  • Matsuyama T, Luiten PGM, Spencer Jr DG, Strosberg AD (1988) Ultrastructural localization of immunoreactive sites for muscarinic acetylcholine receptor proteins in the rat cerebral cortex. Neurosci Res Commun 2:69–76

    Google Scholar 

  • McCormick DA (1989) Cholinergic and noradrenergic modulation of thalamocortical processing. Trends Neurosci 12:215–221

    Google Scholar 

  • Merlie JP, Isenberg K, Carlin B, Olson EN (1984) Regulation of synthesis of acetylcholine receptors. Trends Pharmacol Sci 5:377–379

    Google Scholar 

  • Molenaar PC (1990) Synaptic adaptation in diseases of the neuromuscular junction. Prog Brain Res 84:145–149

    Google Scholar 

  • Patrick J, Lindstrom J (1973) Autoimmune response to acetylcholine receptor, Science 180:871–872

    Google Scholar 

  • Patrick J, Stallcup B (1977) α-bungarotoxin binding and cholinergic receptor function on a rat sympathetic nerve line. J Biol Chem 252:8629–8633

    Google Scholar 

  • Pearson RCA, Powell TRS (1987) Anterograde vs. retrograde degeneration of the nucleus basalis medialis in Alzheimer's disease. In: Wurtman RJ, Corkin SH, Growdon JH (compilers) Alzheimer's disease: advances in basic research and therapies. Center for Brain Sciences and Metabolism Charitable Trust, Cambridge Massachusetts, pp 123–143

    Google Scholar 

  • Peralta EG, Ashkenazi A, Winslow JW, Smith DH, Ramachandran J, Capon DJ (1987) Distinct primary structures, ligand binding properties and tissue specific expression of four human muscarinic acetylcholine receptors. EMBO J 6:3923–3929

    Google Scholar 

  • Perry EK, Perry RH (1983) Human brain neurochemistry some postmortem problems. Life Sci 33:1733–1743

    Google Scholar 

  • Quastel JH, Tennenbaum M, Wheatley AHM (1936) Choline ester formation in and choline esterase activities of tissues in vitro. Biochem J 30:1668–1681

    Google Scholar 

  • Rinne JO (1987) Muscarinic and dopaminergic receptors in the aging human brain. Brain Res 404:162–168

    Google Scholar 

  • Reuss S, Schröder B, Schröder H, Maelicke A (1992) Nicotinic cholinoceptors in the rat pineal gland as analyzed by Western blot, light and electron microscopy. Brain Res 573:114–118

    Google Scholar 

  • Rogers SW, Gahring LC, Papke RL, Heinemann S (1991) Identification of cultured cells expressing ligand-gated cationic channels. Protein Expression Purification 2:108–116

    Google Scholar 

  • Rowell PP, Winkler DL (1984) Nicotinic stimulation of [3H]-acetylcholine release from mouse cerebral cortical synaptosomes. J Neurochem 43:1593–1598

    Google Scholar 

  • Schröder H, Zilles K, Luiten PGM, Strosberg AD, Aghchi A (1989a) Human cortical neurons contain both nicotinic and muscarinic acetylcholine receptors: an immunocytochemical double-labeling study. Synapse 4:319–326

    Google Scholar 

  • Schröder H, Zilles K, Maelicke A, Hajós F (1989b) Immunohistoand cytochemical localization of cortical nicotinic cholinoceptors in rat and man. Brain Res 502:287–295

    Google Scholar 

  • Schröder H, Zilles K, Luiten PGM, Strosberg AD (1990) Immunocytochemical visualization of muscarinic cholinoceptors in the human cerebral cortex. Brain Res 514:249–258

    Google Scholar 

  • Schröder H, Giacobini E, Struble RG, Luiten PGM, van der Zee EA, Zilles K, Strosberg AD (1991a) Muscarinic cholinoceptive neurons in the frontal cortex in Alzheimer's disease. Brain Res Bull 27:631–636

    Google Scholar 

  • Scröder H, Giacobini E, Struble RG, Zilles K, Maelicke A (1991b) Nicotinic cholinoceptive neurons of the frontal cortex are reduced in Alzheimer's disease. Neurobiol Aging 12:259–262

    Google Scholar 

  • Smit LME, Veldman H, Jennekens FGI (1987) Immunohistochemical localization of acetylcholine receptors in human endplates using a monoclonal antibody. J Histochem Cytochem 35:613–617

    Google Scholar 

  • Spencer Jr DG, Horváth E, Traber J (1986) Direct autoradiographic determination of M1 and M2 muscarinic acetylcholine receptor distribution in the rat brain: relation to cholinergic nuclei and projections. Brain Res 380:59–68

    Google Scholar 

  • Steinbach JE, Ifune C (1989) How many kinds of nicotinic acetylcholine receptors are there?. Trends Neurosci 12:3–6

    Google Scholar 

  • Stollberg J, Berg DK (1987) Neuronal acetylcholine receptors: fate of surface and internal pools in cell culture. J Neurosci 7:1809–1815

    Google Scholar 

  • Stone TW (1972) Cholinergic mechanisms in the rat somatosensory cerebral cortex. J Physiol (Lond) 225:485–499

    Google Scholar 

  • Swanson LW, Simmons DM, Whiting PJ, Lindstrom J (1987) Immunohistochemical localization of neuronal nicotinic receptors in the rodent central nervous system. J Neurosci 7:3334–3342

    Google Scholar 

  • Syapin PJ, Ritchie T, Noble L, Noble EP (1987) Postmortem changes in rat brain: studies on membrane-bound enzymes and receptors. J Neurochem 48:1285–1290

    Google Scholar 

  • Tokuyasu KT (1980) Immunochemistry on ultrathin frozen sections. Histochem J 12:381–403

    Google Scholar 

  • Tzartos SJ, Lindstrom JM (1980) Monoclonal antibodies used to probe acetylcholine receptor structure: Localization of the main immunogenic region and detection of similarities between subunits. Proc Natl Acad Sci USA 77:755–759

    Google Scholar 

  • Tzartos S, Rand DE, Einarson BL, Lindstrom JM (1981) Mapping of surface structures of Electrophorus acetylcholine receptor using monoclonal antibodies. J Biol Chem 256:8635–8645

    Google Scholar 

  • Venter JC, Di Porzio U, Robinson DA, Shreeve SM, Lai J, Kerlavage AR, Fracek Jr SP, Lentes K-U, Fraser CM (1988) Evolution of neurotransmitter receptor system. Prog Neurobiol 30:105–169

    Google Scholar 

  • Wada K, Ballivet M, Boulter J, Connolly J, Wada E, Deneris ES, Swanson LW, Heinemann S, Patrick J (1988) Functional expression of a new pharmacological subtype of brain nicotinic acetylcholine receptor. Science 240:330–334

    Google Scholar 

  • Wada E, Wada K, Boulter J, Deneris E, Heinemann S, Patrick J, Swanson LW (1989) Distribution of alpha2, alpha3, alpha4, and beta2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol 284:314–335

    Google Scholar 

  • Wamsley JK, Zarbin MA, Birdsall NJM, Kuhar MJ (1980) Muscarinic cholinergic receptors: autoradiographic localization of high and low affinity agonist binding sites. Brain Res 200:1–12

    Google Scholar 

  • Wamsley K, Gehlert DR, Roeske WR, Yamamura HI (1984a) Muscarinic antagonist binding site heterogeneity as evidenced by autoradiography after direct labeling with [3H]-QNB and [3H]-pirenzepine. Life Sci 34:1395–1402

    Google Scholar 

  • Wamsley JK, Zarbin MA, Kuhar MJ (1984b) Distribution of muscarinic cholinergic high and low affinity agonist binding sites: a light microscopic autoradiographic study. Brain Res Bull 12:233–243

    Google Scholar 

  • Watters D, Maelicke A (1983) Organization of ligand binding sites at the acetylcholine receptor: a study with monoclonal antibodies. Biochemistry 22:1811–1819

    Google Scholar 

  • Watson M, Yamamura HI, Roeske WR (1983) A unique regulatory profile and regional distribution of [3H]-pirenzepine binding in the rat provide evidence for distinct M1 and M2 receptor subtype. Life Sci 32:3001–3011

    Google Scholar 

  • Whitehouse PJ, Lynch D, Kuhar MJ (1984) Effects of postmortem delay and temperature on neurotransmitter receptor binding in a rat model of the human autopsy process. J Neurochem 43:553–559

    Google Scholar 

  • Whitehouse PJ, Martino AM, Antuono PG, Lowenstein PR, Coyle JT, Price DL, Kellar KJ (1986) Nicotinic acetylcholine binding sites in Alzheimer's disease. Brain Res 371:146–151

    Google Scholar 

  • Whitehouse PJ, Martino AM, Wagster MV, Price DL, Mayeux R, Atack JR, Kellar KJ (1988) Reductions in [3H]-nicotinic acetylcholine binding in Alzheimer's disease and Parkinson's disease: an autoradiographic study. Neurology, 38:720–723

    Google Scholar 

  • Whiting PJ, Lindstrom JM (1986) Pharmacological properties of immunoisolated neuronal nicotinic receptors. J Neurosci 6:3061–3069

    Google Scholar 

  • Whiting PJ, Liu R, Morley BJ, Lindstrom JM (1987a) Structurally different neuronal nicotinic acetylcholine receptor subtypes purified and characterized using monoclonal antibodies. J Neurosci 7:4005–4016

    Google Scholar 

  • Whiting PJ, Schoepfer R, Swanson LW, Simmons DM, Lindstrom JM (1987b) Functional acetylcholine receptor in PC12 cells react with a monoclonal antibody to brain nicotinic receptors. Nature 327:515–518

    Google Scholar 

  • Whittaker VP (ed) (1988) The cholinergic synapse. Handbook of experimental pharmacology, vol 86. Springer, Berlin Heidelberg New York, pp 1–762

    Google Scholar 

  • Whittaker VP, Schmid DW (1988) Model cholinergic systems: The electromotor system of Torpedo. In: Whittaker VP (ed) The cholinergic synapse. Handbook of experimental pharmacology, vol 86. Springer, Berlin Heidelberg New York, pp 23–39

    Google Scholar 

  • Whittaker VP, Michaelson IA, Kirkland RJ (1963) The separation of synaptic vesicles from disrupted nerve ending particles. Biochem Pharmacol 12:300–302

    Google Scholar 

  • Whittaker VP, Michaelson IA, Kirkland RJ (1964) The separation of synaptic vesicles from nerve-ending particles (‘synaptosomes’). Biochem J 90:293–303

    Google Scholar 

  • Zee EA van der, Matsuyama T, Strosberg AD, Traber J, Luiten PGM (1989) Demonstration of muscarinic acetylcholine receptor-like immunoreactivity in the rat forebrain and upper brain stem. Histochemistry 92:475–485

    Google Scholar 

  • Zee EA van der, Streefland C, Strosberg AD, Schröder H, Luiten PGM (1991) Colocalization of muscarinic and nicotinic receptors in cholinoceptive neurons of the suprachiasmatic region in young and aged rats. Brain Res 542:348–352

    Google Scholar 

  • Zee EA van der, Streefland C, Strosberg AD, Schröder H, Luiten PGM (1992) Visualization of cholinoceptive neurons in the rat neocortex: colocalization of muscarinic and nicotinic acetylcholine receptors. Mol Brain Res 14:326–336

    Google Scholar 

  • Zilles K, Schleicher A, Rath M, Bauer A (1988) Quantitative receptor autoradiography in the human brain. Methodical aspects. Histochemistry 90:129–137

    Google Scholar 

  • Zilles K, Schröder H, Schröder U, Horvath E, Werner L, Luiten PGM, Maelicke A, Strosberg AD (1989) Distribution of cholinergic receptors in the rat and human neocortex. In: Frotscher M, Misgeld U (eds) Central cholinergic synaptic transmission. Experientia [Suppl] vol 57. Birkhäuser, Basel, pp 212–228

    Google Scholar 

  • Zilles K, Qü M, Schröder H, Schleicher A (1991) Neurotransmitter receptors and cortical architecture. J Hirnforsch 32:343–356

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schröder, H. Immunohistochemistry of cholinergic receptors. Anat Embryol 186, 407–429 (1992). https://doi.org/10.1007/BF00185457

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00185457

Key words

Navigation