Skip to main content
Log in

A circumferential crack in a cylindrical shell under tension

  • Published:
International Journal of Fracture Mechanics Aims and scope Submit manuscript

Abstract

A closed cylindrical shell under uniform internal pressure has a slit around a portion of its circumference. Linear shallow shell theory predicts inverse square-root-type singularities in certain of the stresses at the crack tips. This paper reports the computed strength of these singularities for different values of a dimensionless parameter based on crack length, shell radius and shell thickness.

Résumé

On considère une enveloppe cylindrique fermée soumise à pression interne et comportant une saignée sur une portion de sa circonférence.

D'après la théorie linéaire des enveloppes courtes, on peut prédire des singularités d'exposant — 1/2 dans certains états de contrainte aux extrémités de l'entaille. Le mémoire fournit une évaluation numérique de ces singularités pour diverses valeurs d'un paramètre sans dimensions caractéristique de la longueur de la fissure, du rayon de courbure de l'enveloppe et de son épaisseur.

Zusammenfassung

Eine einem gleichförmigen internen Druck ausgesetzte geschlossene zylindrische Hülle hat einen an einem Teil des Umfangs entlanglaufénden Schlitz. Die lineare Theorie kurzer Hüllen sagt für verschiedene Spannungen an der Rißspitze Singularitäten des Typs der umgekehrten Quadratwurzel voraus. Vorliegender Bericht gibt für verschiedene Werte eines auf Rißlänge, Hüllenumfang und Hüllenlänge begründeten dimensionslosen Parameters, die berechneten Werte dieser Singularitäten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

Rh 1/2[3/4(1−v2)]−1/2

c :

half crack length

E, v :

Young's modulus and Poisson's ratio

h :

thickness of shell

\(\overline M _x ,{\text{ }}\overline M _y ,{\text{ }}\overline M _{xy} {\text{ = }}\left( {\frac{{Po^{b^2 } }}{8}} \right){\text{ (}}\overline M _x ,{\text{ }}\overline M _y ,{\text{ }}\overline M _{xy} )\) :

bending stress measures

\(\overline N _x ,{\text{ }}\overline N _y ,{\text{ }}\overline N _{xy} {\text{ = (}}P_0 {\text{ }}R){\text{ (}}\overline N _x ,{\text{ }}\overline N _y ,{\text{ }}\overline N _{xy} )\) :

(p 0 R)(N x , N y , N xy ) membrane stress measures

\(\overline Q _x ,{\text{ }}\overline Q _y {\text{ = }}\left( {\frac{{P_0 ^b }}{{8\lambda }}} \right){\text{ (}}Q_x ,{\text{ }}Q_y )\) :

\(\overline u ,{\text{ }}\overline v {\text{ = }}\frac{{P_0 ^{Rc} }}{{2Eh}}{\text{ (}}u,{\text{ }}v)\) transverse shear stress measures

V :

Q x + M xy, y effective transverse shear stress

p 0 :

pressure inside shell

R :

radius of shell

ū, \(\overline x {\text{,}}\overline y {\text{ = }}c(x,y)\) :

tangential displacements

\(\bar w = \frac{{2p_0 R^2 \lambda ^2 }}{{Eh}}\) :

normal displacement

\(\overline x {\text{,}}\overline y {\text{ = }}c(x,y)\) :

c(x, y) axial and circumferential coordinates

λ:

c/b

ϕ:

dimensionless stress function

ψ:

w + iϕ complex stress function

References

  1. L. G. Copley and J. L. Sanders, Jr. A Longitudinal Crack in a Cylindrical Shell under Internal Pressure, International Journal of Fracture Mechanics, 5 (1969) 117–131.

    Article  Google Scholar 

  2. L. G. Copley, A Longitudinal Crack in a Cylindrical Shell, Ph.D. Thesis presented to the Division of Engineering and Applied Physics, Harvard University, May (1965).

  3. E. S. Folias, A Circumferential Crackina Pressurized Cylindrical Shell, International Journal of Fracture Mechanics, 3 (1967) 1–11.

    Article  Google Scholar 

  4. K. Marguerre, Zur Theorie der gekrummten Platte grosser Formänderung, Proceedings 5th Congress of Applied Mechanics (1938) 93–101.

  5. J. L. Sandersand J. G. Simmonds, Concentrated Forceson Shallow Cylindrical Shells, Journal of Applied Mechanics, 37, 2 (1970) 367–373.

    Google Scholar 

  6. J. L. Sanders, Jr., Cutouts in Shallow Shells, Journal of Applied Mechanics, 37, 2 (1970) 374–383.

    MATH  Google Scholar 

  7. R. W. Peters and Paul Kuhn, Bursting Strength of Unstiffened Pressure Cylinders with Slits, NACA TN 3993, April (1957).

  8. R. B. Anderson and T. L. Sullivan, Fracture Mechanics of Through-Cracked Cylindrical Pressure Vessels, NASA TN D-3252, February (1966).

  9. M. E. Duncan Fama and J. L. Sanders, Jr., The Effect of a Circumferential Stiffener on the Stress in a Pressurized Cylindrical Shell with a Longitudinal Crack, International Journal of Fracture Mechanics, 5 (1969) 133–135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by the National Aeronautics and Space Administration under Grant NGL 22-007-012, and by the Division of Engineering and Applied Physics, Harvard University. The first author was also supported in part by a Fellowship from the New Zealand Federation of University Women.

Formerly Graduate Student, Division of Engineering and Applied Physics, Harvard University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duncan-Fama, M.E., Sanders, J.L. A circumferential crack in a cylindrical shell under tension. Int J Fract 8, 15–20 (1972). https://doi.org/10.1007/BF00185194

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00185194

Keywords

Navigation