The contributions of cigarette yield, consumption, inhalation and puffing behaviour to the prediction of smoke exposure

Summary

The overall predictability of smoke exposure indicators and the importance of different influencing factors were assessed in a cross-sectional study (n = 144), using multiple linear regression and bivariate correlation analyses. Respiratory CO, and plasma nicotine and cotinine concentrations were measured before and after smoking, for lip or holder smoking, and natural or standardized (30 puffs) puffing. The prediction of smoke exposure measures varied considerably across sampling times, smoking conditions, and dependent variables. The variance of plasma cotinine and nicotine were predictable to a considerable extent (30%; 19–41 %) by cigarette yield, consumption and self-reported inhalation, whereas respiratory CO was less predictable (15–27%). Generally, consumption was the most important predictor, surpassed by nicotine yield for post-smoking plasma nicotine. Smoke exposure from a single smoking period could be predicted to a variable degree (CO, 11–42%; nicotine, 33–54%) by a subset of smoker's sex, cigarette yield, self-reported inhalation and puffing characteristics. The highest prediction was found under standardized smoking conditions (30 puffs through a holder), the lowest under natural smoking conditions. The best subset of predictors, especially with respect to puffing parameters, was found to vary considerably across smoking conditions and dependent variables.

This is a preview of subscription content, access via your institution.

Abbreviations

CED:

cigarettes on experimental day

CO:

carbon monoxide

CPD:

cigarettes per day

H:

holder smoking

L:

lip smoking

N:

natural puffing

S:

standardized puffing

References

  1. 1.

    Adams L, Lee C, Rawbone R, Guz A (1983) Patterns of smoking: measurement and variability in asymptomatic smokers. Clin Sci 65:383–392.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Bättig K, Buzzi R, Nil R (1982) Smoke yield of cigarettes and puffing behavior in men and women. Psychopharmacology 76:139–148.

    Article  PubMed  Google Scholar 

  3. 3.

    Benowitz NL, Hall SM, Herning RI, Jacob P, Jones RT, Osman AL (1983) Smokers of low-yield cigarettes do not consume less nicotine. N Engl J Med 309:139–142.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Bridges RB, Combs JG, Humble JW, Turbek JA, Rehm SR, Haley NJ (1990) Population characteristics and cigarette yield as determinants of smoke exposure. Pharmacol Biochem Behav 37:17–28.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Bridges RB, Combs JG, Humble JW, Turbek JA, Rehm SR, Haley NJ (1990) Puffing topography as a determinant of smoke exposure. Pharmacol Biochem Behav 37:29–39.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Burling TA, Lovett SB, Richter WT, Frederiksen LW (1983) Alveolar carbon monoxide: the relative contributions of daily cigarette rate, cigarette brand, and smoking topography. Addict Behav 8:23–26.

    Article  Google Scholar 

  7. 7.

    Creighton DE, Noble MJ, Whewell RT (1978) Instruments to measure, record and duplicate human smoking patterns. In: Thornton RE (ed) Smoking behaviour. Churchill Livingstone, Edinburgh, pp 277–288.

    Google Scholar 

  8. 8.

    Daenens P, Laruelle L, Callewaert K, DeSchepper P, Galeazzi R, van Rossum J (1985) Quantitative analysis of nicotine in biological fluids by capillary gaschromatographymass spectrometry-selected ion monitoring. J Chromatogr 342:79–87.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Davis RA (1986) The determination of nicotine and cotinine in plasma. J Chromatogr Sci 24:134–141.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Ebert RV, McNabb ME, McCusker KT, Snow SL (1983) Amount of nicotine and carbon monoxide inhaled by smokers of low-tar, low-nicotine cigarettes. JAMA 250:2840–2842.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Feyerabend C, Russell MAH (1989) Rapid gas-liquid chromatographic determination of cotinine in biological fluids. Analyst 105:998–1001.

    Article  Google Scholar 

  12. 12.

    Gori GB, Lynch CJ (1985) Analytical cigarette yields as predictors of smoke bioavailability. Regul Toxicol Pharmacol 5:314–326.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Gori GB, Benowitz NL, Lynch CJ (1986) Mouth versus deep airways absorption of nicotine in cigarette smokers. Pharmacol Biochem Behav 25:1181–1184.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Hatsukami DK, Pickens RW, Svikis DS, Hughes JR (1988) Smoking topography and nicotine blood levels. Addict Behav 13:91–95.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Herning RI, Jones RT, Benowitz NL, Mines AH (1983) How a cigarette is smoked determines blood nicotine levels. Clin Pharmacol Ther 33:84–90.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Hill P, Marquardt H (1980) Plasma and urine changes after smoking different brands of cigarettes. Clin Pharmacol Ther 27:652–658.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Hill P, Haley NJ, Wynder EL (1983) Cigarette smoking: carboxyhemoglobin, plasma nicotine, cotinine and thiocyanate vs self-reported smoking data and cardiovascular disease. J Chron Dis 36:439–449.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Höfer I, Nil R, Bättig K (1991) Nicotine yield as determinant of smoke exposure indicators and puffing behavior. Pharmacol Biochem Behav 40:139–149.

    Article  PubMed  Google Scholar 

  19. 19.

    Jaffe JH, Kanzler M, Friedman L, Stunkard AJ, Verebey K (1981) Carbon monoxide and thiocyanate levels in low tar/nicotine smokers. Addict Behav 6:337–343.

    Article  Google Scholar 

  20. 20.

    Maron DJ, Fortmann SP (1987) Nicotine yield and measurement of cigarette smoke exposure in a large population: Are lower yield cigarettes safer? Am J Publ Health 77:546–549.

    CAS  Article  Google Scholar 

  21. 21.

    McBride MJ, Guyatt AR, Kirkham AJT, Cumming G (1984) Assessment of smoking behaviour and ventilation with cigarettes of different nicotine yield. Clin Sci 67:619–631.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Nil R, Bättig K (1989) Smoking behavior: A multivariate process. In: Ney T, Gale A (eds) Smoking and human behavior. Wiley, New York, pp 199–221.

    Google Scholar 

  23. 23.

    Nil R, Buzzi R, Bättig K (1986) Effects of different cigarette smoke yields on puffing and inhalation: Is the measurement of inhalation volumes relevant for smoke absorption? Pharmacol Biochem Behav 24:587–595.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Rickert WS, Robinson JC (1981) Estimating the hazards of ‘less hazardous cigarettes’ II. Study of cigarette yields of nicotine, carbon monoxide and hydrogen cyanide in relation to levels of cotinine carboxyhemoglobin and thiocyanate in smokers. J Toxicol Environ Health 7:391–403.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Russell MAH, Wilson C, Patel UA, Feyerabend C, Cole PV (1975) Plasma nicotine levels after smoking cigarettes with high, medium, and low nicotine yields. Br Med J 2:414–416.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Russell MAH, Jarvis M, Iyer R, Feyerabend C (1980) Relation of nicotine yield of cigarettes to blood nicotine concentrations in smokers. Br Med J 280:972–976.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Stepney R (1982) Exposure to carbon monoxide in smokers of middle and low tar cigarettes. Br J Dis Chest 76:390–396.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Sutton SR, Russell MAH, Iyer R, Feyerabend C, Saloojee Y (1982) Relationship between cigarette yields, puffing patterns, and smoke intake: evidence for tar compensation? Br Med J 285:500–603.

    Article  Google Scholar 

  29. 29.

    Tobin MJ, Jenouri G, Sackner MA (1982) Subjective and objective measurements of cigarette smoke inhalation. Chest 82:696–700.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Verebey KG, DePace A, Mulé SJ, Kanzler M, Jaffe JH (1982) A rapid, quantitative GLC method for the simultaneous determination of nicotine and cotinine. J Anal Toxicol 6:294–296.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Zacny JP, Stitzer ML, Brown FJ, Yingling JE, Griffiths RR (1987) Human cigarette smoking: Effects of puff and inhalation parameters on smoke exposure. J Pharmacol Exp Ther 240:554–564.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Höfer, I., Nil, R., Wyss, F. et al. The contributions of cigarette yield, consumption, inhalation and puffing behaviour to the prediction of smoke exposure. Clin Investig 70, 343–351 (1992). https://doi.org/10.1007/BF00184671

Download citation

Key words

  • Smoke exposure
  • Plasma nicotine
  • Plasma cotinine
  • Respiratory CO
  • Cigarette yield