Microbial Ecology

, Volume 30, Issue 1, pp 79–88

Adaptation of inducible defense in Euplotes daidaleos (Ciliophora) to predation risks by various predators

  • J. Kusch

DOI: 10.1007/BF00184515

Cite this article as:
Kusch, J. Microb Ecol (1995) 30: 79. doi:10.1007/BF00184515


The extent of induced morphological defense in Euplotes daidaleos correlates to this ciliate's predation risk from the defense-inducing predator species. Euplotes daidaleos responded by morphological transformation only to organisms that are able to feed on typically formed Euplotes cells (63 ± 5 μm cell width in E. daidaleos). Three of those potential predator species caused defensive changes to various degrees (Student's t-test, P < 0.1 to P < 0.0001): Lembadion bullinum (Ciliata) induced 82 ± 6 μm cell width in E. daidaleos; Chaetogaster diastrophus (Oligochaeta) induced 85 = 6 μm width; and Stenostomum sphagnetorum (Turbellaria) induced 89 ± 8 μm width (at a density of 10 predators per milliliter, respectively). At higher predator densities (50 or 100 organisms per milliliter), Euplotes developed a correspondingly larger width (to a maximum of 103 ± 10 μm in the presence of S. sphagnetorum). Euplotes did not respond to organisms (e.g., Blepharisma japonicum, Colpidium campylum, Didinium nasutum, Paramecium caudatum, Spirostomum ambiguum, Stentor coeruleus) that cannot feed on this ciliate species. Daphnia longispina and Bursaria truncatella predators, which can feed on large prey of ≥125, or ≥200 μm in diameter, respectively, also had no effect on the morphology of Euplotes. The extent of defense in Euplotes that was induced by 10 predators per milliliter during 24 h decreased the predation risk from those predators to 67% in the presence of S. sphagnetorum, to 50% with L. bullinum, and to 15% with C. diastrophus, compared to the typical form of Euplotes. In a natural population, the defensive form of E. daidaleos was found with average cell widths of 88 ± 8 μm. The results indicate that predator-induced defense in natural Euplotes populations is beneficial to this prey and that it is adapted to the predation abilities of Euplotes predators, whereby energetical costs related to defensive changes may be saved.

Copyright information

© Springer-Verlag New York Inc 1995

Authors and Affiliations

  • J. Kusch
    • 1
  1. 1.Institute for General Zoology and GeneticsUniversity of MünsterGermany
  2. 2.Institut für Allgemeine Zoologie und Genetik der Universität MünsterMünsterGermany

Personalised recommendations