Skip to main content
Log in

A finite line crack in a pressurized spherical shell

  • Published:
International Journal of Fracture Mechanics Aims and scope Submit manuscript

Abstract

The deformation of a thin sheet having initial spherical curvature is shown to be associated with that of an initially flat plate resting upon an elastic foundation. Using an integral formulation the coupled Reissner equations for a shell with a crack of length 2c are solved for the in-plane and Kirchhoff bending stresses, and, among other things, it is found that the explicit nature of the stresses near the crack point depends upon the inverse half power of the non-dimensional distance from the point e. The character of the combined extension-bending stress field near the crack tip is investigated in detail for the special case of a radial crack in a spherical cap which is subjected to a uniform internal pressure qo and is clamped at the boundary \(\overline {\text{R}} = \overline {\text{R}} _{\text{o}}\). Pending a complete study of the solution, approximate results for the combined surface stresses near the crack tip normal and along the line of crack prolongation are respectively of the form

$$\sigma _y (\varepsilon ,0)|_{\nu = {1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} \approx 0.45\sqrt {{1 \mathord{\left/ {\vphantom {1 \varepsilon }} \right. \kern-\nulldelimiterspace} \varepsilon }} \tfrac{{q_O R}}{h} + ...$$
$$\lambda = 0.98$$
$${\text{c = 0}}{\text{.23 in}}$$
$$\overline {\text{R}} _{\text{o}} = 4.25 {\text{in}}$$

and similarly

$$\sigma _x (\varepsilon ,0)|_{\nu = {1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} \approx 0.45\sqrt {{1 \mathord{\left/ {\vphantom {1 \varepsilon }} \right. \kern-\nulldelimiterspace} \varepsilon }} \tfrac{{q_O R}}{h} + ...$$
$$\lambda = 0.98$$
$${\text{c = 0}}{\text{.23 in}}$$
$$\overline {\text{R}} _{\text{o}} = 4.25 {\text{in}}$$

It is interesting to note that the stress σx and σy, along the line of crack prolongation, for this geometry are equal. In general, they will be of the same sign and will differ only slightly in magnitude due to the bending component. Finally, the experimental and theoretical results for εy, along the line of crack prolongation, compare very well.

Résumé

On montre que la déformation d' une feuille mince ayant une courbure sphérique initiale, est associée avec celle d'une plaque mince reposant sur une fondation élastique.

En utilisant une forme intégrale, on résoud les equations couplées de Reissner, pour une coque avec une fracture de longueur 2c, pour le plan interne et les contraintes de flexion de Kirchhoff. D' autre part on trouve que la forme explicite des contraintes près due point de fracture, depend de l'inverse de la demi puissance de la distance, sans dimension, au point ε. Le caractère du champs de contrainte combinée, flexiontension, pret de l'extrémité de la fracture, est étudié en detail dans le cas particulier d'une fracture radiale dans une calotte sphérique soumise à une pression interne uniforme qo et qui est encastrée à la limite \(\overline {\text{R}} = \overline {\text{R}} _{\text{o}}\). En attendant une etude complete de la solution, des résultats approchés pour les contraintes combinées de surface, près de l' extrémité de la fracture normale, et le long de la ligne de prolongation de la fracture, ont donnés respectivement

$$\sigma _y (\varepsilon ,0) \approx \sigma _x (\varepsilon ,0) \approx 0.45 \sqrt {1/\varepsilon } (q_o R/h)$$
$$ou \nu = 1/3, c = 0.23 inch, \overline R _o = 4.25 inch et \lambda = 0.98.$$

Il est interressant de noter que les contraintes σx et σy le long de la ligne de prolongation de fracture sont éagles pour cette géométrie En general, elles out le même signe et ne différent légèrement qu' en module, du fait de la composante de flexion. Finalement les resultats expérimentaux et théoriques pour εy le long de la ligne de prolongation de la fracture coïncident bien.

Zusammenfassung

Es wird gezeigt, dass die Verformung einer duennen, anfaenglich sphaerisch gekruemmten Platte mit der Verformung einer anfaenglich ebenen Platte, die elastisch gebettet ist, verbunden ist. Mit Hilfe einer Integralformulation werden die gekuppelten Reissner-Gleichungen fuer eine Schale, die einen Riss der Laenge 2c enthaelt, fuer die ebenen und die Kirchhoff Biegespannungen geloest. Unter anderem wurde festgestellt, dass die explizite Form der Spannungen in der Naehe des.Bruchpunktes umgekehrt proportional der Wurzel des dimensionslosen Abstandes vom Punkte ist. Der Charakter des Dehnmigs-Biegespannungsfeldes in der Umgebung der Risspitze wind im Detail untersucht fuer den speziellen Fall eines radialen Risses in einer sphaerischen Kappe unter gleichfoermigen Innendruck qo, die an ihrer Auflage \(\overline {\text{R}} = \overline {\text{R}} _{\text{o}}\) eingeklemmt ist. Die angenaeherten Ergebnisse - das ausfuehrliche Studium der Loesungen ist noch nicht abgeschlossen - fuer die kombinierten Oberflaechenspannungen nahe der Risspitze senkrecht zum Riss and in Richtung des Risses sind von der Form:

$$et \nu = 1/3, c = 0.23 inch, \overline R _o = 4.25 inch und \lambda = 0.98.$$

Es ist interessant, dass die Spannungen σx and σy entlang der Linie der Rissfortpflanzung gleich sind fuer diessen Fall. Im allgemeinen werden sie dasselbe Vorzeichen haben and sich nut wenig in der absoluten Groesse unterscheiden infolge der Biegekomponente. Die experimentellea und theoretischen Ergebnisse fuer ɛy entlang der Linie der Rissfortpflaazung stimmen sehr gut ueberein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ang, D. D. and Williams, M. L., “Combined Stresses in an Orthotropic Plate Having a Finite Crack,” Journal of Applied Mechanics, vol. 28, 1961, pp. 372–378.

    MathSciNet  Google Scholar 

  2. Sechler, E. E. and Williams, M. L., “The Critical Crack Length in Pressurized, Monocoque Cylinders,” Final Report on Contract NAw-6525, California Institute of Technology, September 1959.

  3. Reissner, E., “On Some Problems in Shell Theory,” Structural Mechanics, Proceedings of the First Symposium on Naval Structural Mechanics, Pergamon Press, 1960, pp. 74–113.

  4. Reissner, E., “A Note on Membrane and Bending Stresses in Spherical Shells,” J. Soc. Industr. Appl. Math., vol. 4, 1956, pp. 230–240.

    MathSciNet  Google Scholar 

  5. Folias, Efthymios S. , “The Stresses in a Cracked Spherical Shell,” (Submitted to the Journal of Mathematics and Physics, 1964).

  6. Folias, Efthymios S., “The Stresses in a Spherical Shell Containing a Crack,” ARL 64-23, Aerospace Research Laboratories, Office of Aerospace Research, U. S. Air Force, January 1964.

  7. Knowles, J. K. and Wang, N. M., “On the Bending of an Elastic Plate Containing a Crack,” Journal of Mathematics and Physics, vol. 39, 1960, pp. 223–236.

    MathSciNet  Google Scholar 

  8. Williams, M. L., “The Bending Stress Distribution at the Base of a Stationary Crack,” Journal of Applied Mechanics, vol. 28, Trans. ASME, vol. 83, Series E, 1961, pp. 78–82.

    MATH  Google Scholar 

  9. Williams, M. L., “On the Stress Distribution at the Base of a Stationary Crack,” Journal of Applied Mechanics, vol. 24, March 1957, pp. 109–114.

    MATH  Google Scholar 

  10. Reissner, E., “Stresses and Small Displacements of Shallow Spherical Shells I, II,” Journal of Mathematics and Physics, vol. 25, 1946, pp. 80–85, 279–300.

    MATH  MathSciNet  Google Scholar 

  11. Griffith, A. A., “The Theory of Rupture,” Proceedings of the First International Congress of Applied Mechanics, Delft, 1924, pp. 55–63.

  12. Swedlow, J. L., “On Griffith's Theory of Fracture,” GALCIT SM 63-8, California Institute of Technology, March 1963.

  13. Parmerter, R. R., “The Buckling of Clamped Shallow Spherical Shells Under Uniform Pressure,” Ph. D. Dissertation, California Institute of Technology, September 1963. 1

  14. Mikhlin, S. G., Integral Equations, English translation by A. H. Armstrong, published by Pergamon Press, 1957.

Download references

Authors

Additional information

Formerly Research Fellow, California Institute of Technology, Dr. Folias is currently in Thessaloniki, Greece. Mailing address c/o the editorial office, Pasadena, California.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folias, E.S. A finite line crack in a pressurized spherical shell. Int J Fract 1, 20–46 (1965). https://doi.org/10.1007/BF00184151

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00184151

Keywords

Navigation