Skip to main content
Log in

The interaction of wind and fire

  • Review Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The rate of spread of a wildfire increases markedly when a wind springs up. Why and how this happens is still not completely understood. However, by using a judicious mixture of laboratory experiments, field experiments, sensitivity analyses of existing wildfire spread models and physical reasoning it is possible to identify some features that have not been adequately considered in the past. In particular: (i) the energetics of wind-blown wildfires indicate that a fire-wind may not exist and that the wind may blow through the fire line. ii) The rate of spread of the fire-front depends on the atmospheric stability such that the fire-front speeds are 50% or more faster during winds in the 2 to 6 m/s range under unstable conditions, iii) The wind speed acting on the flame provides an upper limit to the flame propagation speed. Existing attempts to constrain the propagation rate of fire-spread models at high wind speeds appear incorrect and, iv) wind fluctuations interacting with the standing fuel generate sweeps of downward air which carry the flame into the fuel bed and directly preheat the fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albini, F. A.: 1982, ‘Response of Free-Burning Fires to Nonsteady Wind’, Combust. Sci. Tech. 29, 225–241.

    Google Scholar 

  • Albini, F. A. and Baughman, R. A.: 1979, ‘Estimating Windspeed for Predicting Wildland Fire Behavior’, Research Paper INT-221, USDA Forest Service, Ogden, Utah.

    Google Scholar 

  • Alexander, M. E.: 1982, ‘Calculating and Interpreting Forest Fire Intensities’, Can. J. Bot. 60, 349–357.

    Google Scholar 

  • Anderson, H. E.: 1969, ‘Heat Transfer and Fire Spread’, Report INT-69, USDA Forest Service, Ogden, Utah.

    Google Scholar 

  • Beer, T.: 1983, Environmental Oceanography, Pergamon Press, Oxford.

    Google Scholar 

  • Beer, T.: 1990, Applied Environmetrics Meteorological Tables, Applied Environmetrics, Balwyn.

    Google Scholar 

  • Byram, G. M.: 1959, ‘Combustion of Forest Fuels’, in K. P. Davis (Ed.), Forest Fire Control and Use, McGraw-Hill, New York.

    Google Scholar 

  • Carslaw, H. S. and Jaeger, H. W.: 1959 Conduction of Heat in Solids, 2nd edn., Clarendon Press, Oxford.

    Google Scholar 

  • Chandler, C., Cheney, P., Thomas, P., Trabaud, L. and Williams, D.: 1983, Fire in Forestry, Volume 1, John Wiley & Sons, New York.

    Google Scholar 

  • Cheney, N. P.: 1981, ‘Fire Behaviour’, in A. M. Gill, R. H. Groves, and I. R. Noble (eds.), Fire and the Australian Biota, Australian Academy of Science, Canberra. pp 151–175.

    Google Scholar 

  • De Mestre, N. J., Catchpole, E. A., Anderson, D. H. and Rothermel, R. C.: 1989, ‘Uniform Propagation of a Planar Fire Front without Wind’, Combust. Sci. Tech. 65, 231–244.

    Google Scholar 

  • Durre, A. M.: 1989, ‘Mid-flame Wind Speed and the Rothermel Rate-of-Spread’, in Proc. 8th Biennial Conf. Simulation Soc. Aust., Canberra.

  • Durre, A. M. and Beer, T.: 1989, ‘Wind Information Prediction Study: Annaburroo Meteorological Data Analysis’, Technical Paper 17, Division of Atmospheric Research, CSIRO, Australia.

    Google Scholar 

  • Eckert, E. R. G. and Drake, R. M., Jr.: 1959, Heat and Mass Transfer, McGraw-Hill, New York.

    Google Scholar 

  • Finnigan, J. J. and Raupach, M. R.: 1987, ‘Transfer Processes in Plant Canopies in Relation to Stomatal Characteristics’;. In: E. Zeiger, G. D. Farquhar, and I. R. Cowan (eds.), Stomatal Function, Stanford University Press, Stanford, CA, pp. 385–429.

    Google Scholar 

  • Garratt, J. R.: 1978, ‘Flux Profile Relations above Tall Vegetation’, Q. J. Roy. Meteorol. Soc. 104, 199–211.

    Google Scholar 

  • Garratt, J. R.: 1980, ‘Surface Influence upon Vertical Profiles in the Atmospheric Near-Surface Layer’, Q. J. Roy. Meteorol. Soc. 106, 803–819.

    Google Scholar 

  • Grishin, A. M., Gruzin, A. D. and Gruzina, E. E.: 1984, ‘Aerodynamics and Heat Exchange between the Front of a Forest Fire and the Surface Layer of the Atmosphere’, J. Applied Mech. & Tech Phys. 25, 889–894.

    Google Scholar 

  • International Critical Tables, 1929: Volume 5, p. 167, McGraw-Hill, New York.

  • McArthur, A. G.: 1968, ‘The Tasmanian Bushfires of 7th February 1967, and Associated Fire Behaviour Characteristics’, in Conf. Papers, 2nd Aust. Natl. Conf. on Fire, Sydney, pp. 25–48.

  • McGuire, J. H.: 1953, ‘Heat Transfer by Radiation’, Fire Research Special Report No. 2, H.M.S.O., London.

    Google Scholar 

  • Nelson, R. M.: 1986, ‘Measurement of Headfire Intensity in Litter Fuels’, in A. L. Koonce, (ed.), Prescribed Burning in the Midwest, University of Wisconsin, Stevens Point.

    Google Scholar 

  • Nelson, R. M. and Adkins, C. M.: 1986, ‘Flame Characteristics of Wind-Driven Surface Fires’, Can. J. For. Res. 16, 1293–1300.

    Google Scholar 

  • Pearman, G. I., Weaver, H. L. and Tanner, C. B.: 1972, ‘Boundary Layer Heat Transfer Coefficients under Field Conditions’, Agric. Meteorol. 10, 83–92.

    Google Scholar 

  • Raupach, M. R.: 1990, ‘Similarity Analysis of the Interaction of Bushfire Plumes with Ambient Winds’, Math. & Comput. Modelling (in press).

  • Raupach, M. R., Finnigan, J. J. and Brunet, Y.: 1989, Coherent Eddies in Vegetation Canopies, Proc. Fourth Australasian Conf. Heat Mass Transfer, Christchurch, New Zealand, pp. 75–90.

  • Rothermel, R. C.: 1972, ‘A Mathematical Model for Predicting Fire Spread in Wildland Fuels’, Research paper INT-115, USDA Forest Service, Ogden Utah.

    Google Scholar 

  • Skaar, C.: 1972, Water in Wood, Syracuse University Press, Syracuse, p. 140.

    Google Scholar 

  • Sneeuwjagt, R. J. and Frandsen, W. H.: 1977, ‘Behaviour of Experimental Grass Fires vs. Predictions based on Rothermel's Fire Model’, Can J. For. Res. 7, 357–367.

    Google Scholar 

  • Smith, R. K., Morton, B. R. and Leslie, L. M.: 1975, ‘The Role of Dynamic Pressure in Generating Fire Wind’, J. Fluid Mech. 68, 1–19.

    Google Scholar 

  • Thomas, P. H.: 1971, ‘Rates of Spread of Some Wind-Driven Fires’, Forestry, 44, 155–175.

    Google Scholar 

  • Turner, J. S.: 1973, Buoyancy Effects in Fluids, University Press, Cambridge.

    Google Scholar 

  • Yih, C. S.: 1977, ‘Fluid Mechanics — A Concise Introduction to the Theory’, Corrected edition, West River Press, Michigan.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beer, T. The interaction of wind and fire. Boundary-Layer Meteorol 54, 287–308 (1991). https://doi.org/10.1007/BF00183958

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00183958

Keywords

Navigation