Skip to main content
Log in

Determination of the cohesive strength of low-carbon steel (0.03% C) by means of high hydrostatic pressures

  • Published:
International Journal of Fracture Mechanics Aims and scope Submit manuscript

Abstract

Using an extrapolation of tensile data obtained under varying amounts of hydrostatic compression to positive hydrostatic pressure (hydrostatic tension), the cohesive strength of a low-carbon steel (0.03% C) has been determined. These preliminary results indicate a value of 54.6 kg/mm2, somewhat lower than obtained by other investigators. Increased strength with decreasing temperature occurs and is consistent with other observations.

Résumé

La force de cohésion d' un acier à faible 'carbone (0,03% C) a été déterminée par extrapolation des données de traction, obtenues pour diverses valeurs de la compression hydrostatique à une pression hydrostatique positive (tension hydrostatique). Ces résultats préliminaires indiquent une valeur de 54,6 kg/mm2, valeur quelque peu inférieure à celles obtenues par d' autres chercheurs. On constate un accroissement de la force pour une diminution de la température et ceci est conforme à d' autres observations.

Zusammenfassung

Durch Extrapolation vonZugspannungsdaten, welebe unter verschiedenen hydrostatischen Druücken erhalten wurden, auf den Positivwert des hydrostatischen Druckes (hydrostatische Dehnung), wurde die Kohasionsfestigkeit von kohlenstoffarmen Stahl (0.03% C) bestimmt. Die vorläufig erhaltenen Ergebnisse ergeben einen Wert von 54,6 kg/mm2, der etwas niedriger liegt, als die bisher von anderen Forschern erhaltenen Werte.

In Uebereinstimmung mit anderen Beobachtungen nimmt mit fallender Temperatur die Festigkeit zu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kunze “Mitteilungen der deutschen Materialprufungsanstalten” Sonderheft 20, 1–61 (1932).

    Google Scholar 

  2. D.J. MeAdam, Jr. Trans.ASM, 37, 538–566 (1946).

    Google Scholar 

  3. See also: D.J. McAdam, Jr. G.W. Geil, D.H. Woodard, W.D. Jenkins AIMS Tech.Publ.No. 2318, 1–11 (January 1948).

  4. G.W. Uzhik The Cohesive Strength and the Strength of Metals, (in Russian), AN SSSR, Moscow (1950).

    Google Scholar 

  5. T. Pelczynski “Determination of the Cohesive Strength of Materials,” (in Polish), Obrobka plastyczna. T. II, 3 (1962).

  6. J.S. Rinehart; J.PearsonExplosive Working of Metals, New York (1952).

  7. P.L.Teed The Properties of Metallic Materials at Low Temperatures, London (1952).

  8. G.W. Uzhik The Strength and Plasticity of Metals at Low Temperatures, (in Russian), AN SSSR, Moscow (1957).

    Google Scholar 

  9. Ja.M. Potak The Brittle Fracture of Steel and Steelpieces, (in Russian), Oborongiz, Moscow (1955).

    Google Scholar 

  10. J. S. Rinehart “Fracturing by Spalling”, Wear, 7, 4, 315–329 (1964).

    Google Scholar 

  11. M. Brandes “Determination of the Cohesive Strength of Ductile Materials by Means of High Hydrostatic Pressures (up to 30,000 kg/cm2)”, (in Polish), Prace Instytutu Mechaniki Precyzyjnej, 1, 1–13 (1964).

    Google Scholar 

  12. M. Brandes “Technique of Testing the Strength of Materials under High Hydrostatic Pressures”, (in Polish), Prace Instytutu Mechaniki Precyzyjnej, 10, 4, 1–22 (1962). English translation, NEL 1294, National Engineering Laboratory, E. Kilbride, Glasgow.

    Google Scholar 

  13. M. Brandes; S. Dukaj “A Method for Insuring the Pressure Stability while Investigating Mechanical Properties of Metals under High Hydrostatic Pressures up to 10,000 kg/cm2”, (in Polish), Prace Instytutu Mechaniki Precyzyjnej, 1, 22–24 (1965).

    Google Scholar 

  14. M. Brandes; H. Szlachcic Rev.Sci.Instr., 36, 7, 991–993 (1965).

    Google Scholar 

  15. P.W. Bridgman Studies in Large Plastic Flow and Fracture, New York (1952).

  16. B.I. Beresnew; L.F. Vereshchagin; Y.N. Ryabinin; L.D. Livshits Some Problems of Large Plastic Deformation in Metals under High Pressure, (in Russian), AN SSSR, Moscow (1960). English translation, ASTIA Doc. AD-259–251, Office of Technical Services U. S. Dept. of Commerce, Washington, D. C. (1961).

    Google Scholar 

  17. H.Li.D. Pugh “The Mechanical Properties and Deformation Characteristics of Metals and Alloys under Pressure”, NEL Report No. 142, March 1964. Presented at Intl.Conf. on Materials, ASTM, Phila., Pa. (February 1964).

    Google Scholar 

  18. E.W. Colbeck; W.E. Mac-Gilliwray; Manning Trans. Inst. Chem. Engrs., 11, 89–106 (1933).

    Google Scholar 

  19. I.S. Ericson; I.R. Low Acta Met., 5, 7, 405–406 (1957).

    Google Scholar 

  20. A.S. Elding; S.C. Collins J.Appl.Phys., 22, 10, 1296 (1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandes, M. Determination of the cohesive strength of low-carbon steel (0.03% C) by means of high hydrostatic pressures. Int J Fract 2, 419–425 (1966). https://doi.org/10.1007/BF00183820

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00183820

Keywords

Navigation