Skip to main content
Log in

Influence of altered phospholipid composition of the membrane outer layer on red blood cell aggregation: relation to shape changes and glycocalyx structure

  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Reversible aggregation of erythrocytes was investigated after alteration of the phospholipid content in the membrane outer leaflet either by disturbance of endogenous transmembrane lipid asymmetry through changes in cellular free calcium, or by incorporation of exogenous lyso-derivatives. It was found that both calcium loading and lyso-phosphatidylcholine (LPC) addition induce a strong increase in red cell-red cell adhesive energy, whereas lyso-phosphatidylserine (LPS), added in the same amount as LPC, does not. Red cell morphological studies show differences in the shape change efficiency of LPS, LPC and calcium loading. However, it was further demonstrated that shape change is not directly responsible for the observed adhesive energy increase, since neuraminidase or trypsin treatment abolish this increase, even though the shape changes induced by alteration of phospholipid organization are not affected. The latter experiment strongly suggests that the red cell adhesive energy increase results from an alteration of the glycocalyx structure, which could be in turn a consequence of the shape change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Hepes:

4-(2-hydroxyethyl)-1-piperazineethane-sulfonic acid

EGTA:

(Ethylenebis(oxyethylenenitrilo)tetraacetic acid)

DMSO:

dimethyl-sulfoxide

References

  • Bergmann WL, Dressler V, Haest CWM, Deuticke B (1984) Reorientation rates and asymmetry of distribution of lyso-phospholipids between the inner and outer leaflet of the erythrocyte membrane. Biochim Biophys Acta 772: 328–336

    Google Scholar 

  • Bierbaum TJ, Bouma SR, Huestis WH (1979) A mechanism of erythrocyte lysis by lysophosphatidylcholine. Biochim Biophys Acta 555: 102–110

    Google Scholar 

  • Bitbol M, Fellmann P, Zachowski A, Devaux PF (1987) Ion regulation of phosphatidylserine and phosphatidylethanolamine outside-inside translocation in human erythrocyte. Biochim Biophys Acta 904: 268–282

    Google Scholar 

  • Brooks DE (1973) The effect of neutral polymers on the electrokinetic potential of cells and other charged particles. IV. Electrokinetic effect in dextran-mediated cellular interaction. J Colloid Interface Sci 43: 714–726

    Google Scholar 

  • Cevc G, Marsh D (1987) Phospholipid bilayers. Physical principles and models. Wiley, New York

    Google Scholar 

  • Chandra R, Joshi PC, Bajpai VK, Gupta CM (1987) Membrane phospholipid organization in calcium-loaded human erythrocytes. Biochim Biophys Acta 902: 253–262

    Google Scholar 

  • Chien S, Jan KM (1973) Ultrastructure basis of the mechanisms of rouleaux formation. Microvasc Res 5: 155–161

    Google Scholar 

  • Chien S, Sung LA, Kim S, Burke AM, Usami S (1984) Quantitation of red cell aggregation under shear flow. Ann NY Acad Sci 416: 190–206

    Google Scholar 

  • Daleke DL, Huestis WH (1985) Incorporation and translocation of amino-phospholipids in human erythrocytes. Biochemistry 24: 5406–5416

    Google Scholar 

  • Fahraeus R (1929) The suspension stability of blood. Physiol Rev 9: 241–258

    Google Scholar 

  • Friederichs E, Germs J, Lakomek M, Winkler H, Tillmann W (1984) Increased erythrocyte aggregation in infectious diseases: Influence of “acute phase proteins”. Clin Hemorheol 4: 237–244

    Google Scholar 

  • Gast AP, Leibler L (1986) Interactions of sterically stabilized particules suspended in a polymer solution. Macromolecules 19: 686–691

    Google Scholar 

  • Hubbell WL, McConnell HM (1971) Molecular motion in spin label phospholipids and membranes. J Am Chem Soc 93: 314–326

    CAS  PubMed  Google Scholar 

  • Malher E, Martin D, Duvivier C, Volochine B, Stoltz JF (1983) Les méthodes d'électrophorèse des cellules. In: Stoltz JF (ed) Techniques avancées en hémorhéologie, 603–623, DPIC-INPL, Nancy, France

    Google Scholar 

  • Marikovski Y, Khodadad JK, Weinstein RS (1978) Influence of red cell shape on surface charge topography. Exp Cell Res 116: 191–197

    Google Scholar 

  • Marikovski Y, Weinstein RS, Skutelsky E, Danon D (1985) Changes of cell shape and surface charge topography in ATP-depleted human red blood cells. Mech Ageing Dev 29: 309–316

    Google Scholar 

  • McEvoy L, Williamson P, Schlegel RA (1986) Membrane phospholipid asymmetry as a determinant of erythrocyte recognition by macrophages. Proc Natl Acad Sci 83: 3311–3315

    Google Scholar 

  • Meiselman HJ (1978) Rheologie of shape transformed human red cells. Biorheology 15: 225–237

    Google Scholar 

  • Mills P, Snabre P (1983) Agrégamétrie optique de la suspension sanguine. In: Stoltz JF (ed) Techniques avancées en hémo-rhéologie, 580–598, DPIC-INPL, Nancy, France

    Google Scholar 

  • Mills P, Quemada D, Dufaux J (1980) Etude de la cinétique d'agrégation érythrocytaire dans un écoulement de Couette. Rev Phys Appl 15: 1357–1366

    Google Scholar 

  • Mohandas N, Evans EA (1984) Adherance of sickle erythrocytes to cells. Requirement for both cell membrane changes and plasma factors. Blood 64: 282–287

    Google Scholar 

  • Othmane A, Bitbol M, Snabre P, Thiam B, Mills P (1986) Etude comparative de l'agrégation érythrocytaire chez deux sujets ayant un groupe sanguin différent. Innov Tech Biol Med 7: 76–81

    Google Scholar 

  • Othmane A, Bitbol M, Snabre P, Grimaldi A, Bosquet F (1989) Red-cell aggregation in insulin-dependent diabetics. Clin Hemorheol 9: 281–295

    Google Scholar 

  • Schlegel RA, Williamson P (1987) Membrane phospholipid organization as a determinant of blood cell-reticuloendothelial cell interactions. J Cell Physiol 132: 381–384

    Google Scholar 

  • Schlegel RA, Prendergast TW, Williamson P (1985) Membrane phospholipid asymmetry as a factor in erythrocyte-endothelial cell interactions. J Cell Physiol 123: 215–218

    Google Scholar 

  • Schwartz RS, Tanaka Y, Fidler IJ, Tsun-Yee Chu D, Lubin B, Schroit AJ (1985) Increased adherance of sickled and phosphatidylserine enriched human erythrocyte to cultured human peripheral blood monocytes. J Clin Invest 75: 1965–1972

    Google Scholar 

  • Seigneuret M, Devaux PF (1984) ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: Relation to shape changes. Proc Natl Acad Sci USA 81: 3751–3755

    Google Scholar 

  • Sheetz MP, Singer SJ (1974) Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci USA 71: 4457–4461

    Google Scholar 

  • Snabre P, Mills P (1985) Effect of dextran polydispersity on red cell aggregation. Colloid Polym Sci 263: 478–483

    Google Scholar 

  • Snabre P, Mills P (1986a) Effect of dextran polymer on glycocalyx structure and cell electrophoretic mobility. Colloid Polym Sci 263: 494–500

    Google Scholar 

  • Snabre P, Mills P (1986b) Role des interactions électrostatiques dans les phénomènes d'agrégation érythrocytaire. In: Stoltz JF (ed) Hémorhéologie et agrégation érythrocytaire. Editions médicales internationales. Paris, pp 98–110

    Google Scholar 

  • Snabre P, Bitbol M, Mills P (1987) Cell disaggregation behavior in shear flow. Biophys J 51: 795–807

    Google Scholar 

  • Snabre P, Mills P, Othmane A, Thiam BA (1989) Mechanisms of non specific aggregation and rheology of concentrated red blood suspension. Biorheology (in press)

  • Tilley D, Coakley WT, Gould RK, Hewison LA (1987) Real time observations of polylysine, dextran and polyethylene glycol induced mutual adhesion of erythrocytes held in suspension in an ultrasonic standing wave field. Eur Biophys J 14: 499–507

    Google Scholar 

  • Verkleij AJ, Zwaal RFA, Roelofsen B, Comfurius P, Kastelijn D, Van Deenen LLM (1973) The asymmetry distribution of phospholipids in the human red-cell membrane. A combined study using phospholipases and freeze-etching electron microscopy. Biochim Biophys Acta 323: 178–193

    Google Scholar 

  • Warren L (1959) The thiobarbiturie acid assay of sialic acids. J Biol Chem 234: 1972–1975

    Google Scholar 

  • Weed RI, Chailley B (1973) Calcium-pH interactions in the production of shape change in erythrocytes. In: Bessis M, Weed RI, Leblond PF (eds) Red cell shape, physiology, pathology, ultrastructure. Springer, New York Berlin Heidelberg, pp 55–67

    Google Scholar 

  • Williamson P, Algarin L, Bateman J, Choe HR, Schlegel RA (1985) Phospholipid asymmetry in human erythrocyte ghosts. J Cell Physiol 123: 209–214

    Google Scholar 

  • Zachowski A, Favre E, Cribier S, Hervé P, Devaux PF (1986) Outside-Inside translocation of aminophospholipids in the human erythrocyte membrane is mediated by a specific enzyme. Biochemistry 25: 2585–2590

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Offprint requests to: A. Othmane

Rights and permissions

Reprints and permissions

About this article

Cite this article

Othmane, A., Bitbol, M., Snabre, P. et al. Influence of altered phospholipid composition of the membrane outer layer on red blood cell aggregation: relation to shape changes and glycocalyx structure. Eur Biophys J 18, 93–99 (1990). https://doi.org/10.1007/BF00183268

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00183268

Key words

Navigation