Skip to main content
Log in

Heterogeneous logic

  • Published:
Erkenntnis Aims and scope Submit manuscript

Abstract

This paper considers the question: what becomes of the notion of a logic as a way of codifying valid arguments when the customary assumption is dropped that the premisses and conclusions of these arguments are statements from some single language? An elegant treatment of the notion of a logic, when this assumption is in force, is that provided by Dana Scott's theory of consequence relations; this treatment is appropriately generalized in the present paper to the case where we do not make this assumption of linguistic homogeneity. Several applications of the resulting concept of a heterogeneous logic are suggested, but the main emphasis is on the formal development. One topic touched on is a certain contrast between the boolean and the intensional sentence-connectives in this more general setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Benthem, J. F. A. K.: 1983, The Logic of Time, D. Reidel, Dordrecht.

    Google Scholar 

  2. Birkhoff, G. and J. D.Lipson: 1970, ‘Heterogeneous Algebras’, Journal of Combinatorial Theory 8, 115–33.

    Google Scholar 

  3. Chang, C. C. and H. J.Keisler: 1973, Model Theory, North-Holland, Amsterdam.

    Google Scholar 

  4. Chellas, B. F.: 1979, Modal Logic: An Introduction, Cambridge.

  5. Dunn, J. M.: 1986, ‘Relevance Logic and Entailment’, in D.Gabbay and F.Guenthner (eds.), Handbook of Philosophical Logic, Vol. III: Alternatives to Classical Logic, D. Reidel, Dordrecht.

    Google Scholar 

  6. Field, H.: 1977, ‘Logic, Meaning, and Conceptual Role’, Journal of Philosophy 74, 379–409.

    Google Scholar 

  7. Fine, K.: 1974, ‘Models for Entailment’, Journal of Philosophical Logic 3, 347–72.

    Google Scholar 

  8. van Fraassen, B. C.: 1976, ‘Representation of Conditional Probabilities’, Journal of Philosophical Logic 5, 417–30.

    Google Scholar 

  9. Gabbay, D.: 1981, Semantical Investigations in Heyting's Intuitionistic Logic, D. Reidel, Dordrecht.

    Google Scholar 

  10. Gabbay, D.: 1985, ‘Theoretical Foundations for Non-monotonic Reasoning in Expert Systems’, in K. R.Apt (ed.), Logics and Models of Concurrent Systems (NATO ASI Series, Vol. F13), Springer-Verlag, New York.

    Google Scholar 

  11. Gumb, R. D.: 1979, Evolving Theories, Haven, New York.

    Google Scholar 

  12. Hacking, I.: 1969, ‘Linguistically Invariant Inductive Logic’, Synthese 20, 25–47.

    Google Scholar 

  13. Hailperin, T.: 1986, Boole's Logic and Probability, 2nd ed., North-Holland, Amsterdam.

    Google Scholar 

  14. Hiz, H.: 1958, ‘A Warming about Translating Axioms’, American Mathematical Monthly 65, 613–14.

    Google Scholar 

  15. Humberstone, I. L.: 1982, ‘Scope and Subjunctivity’, Philosophia 12, 99–126.

    Google Scholar 

  16. Humberstone, I. L.: 1981, ‘From Worlds to Possibilities’, Journal of Philosophical Logic 10, 313–39.

    Google Scholar 

  17. Humberstone, I. L.: forthcoming, ‘Operational Semantics for Positive R’, Notre Dame Journal of Formal Logic.

  18. Jennings, R. E.: 1981, ‘A Note on the Axiomatization of the Brouwersche Modal Logic’, Journal of Philosophical Logic 10, 341–43.

    Google Scholar 

  19. Kuhn, S. T.: 1977, Many-Sorted Modal Logics, Filosofiska Studier (Uppsala).

  20. Lemmon, E. J.: 1966, ‘Algebraic Semantics for Modal Logics, I’, Journal of Symbolic Logic 31, 46–65.

    Google Scholar 

  21. McArthur, R. P.: 1976, Tense Logic, D. Reidel, Dordrecht.

    Google Scholar 

  22. McRobbie, M. A. and N. D.Belnap: 1979, ‘Relevant Analytic Tableaux’, Studia Logica 38, 187–200.

    Google Scholar 

  23. Scott, D. S.: 1971, ‘On Engendering an Illusion of Understanding’, Journal of Philosophy 68, 787–807.

    Google Scholar 

  24. Scott, P. S.: 1974, ‘Completeness and Axiomatizability in Many-Valued Logic’, in L. Henkin et al. (eds.), Proceedings of the Tarski Symposium, American Mathematical Society, Providence, Rhode Island.

  25. Segerberg, K.: 1957, ‘The Logic of “Tomorrow”’, Theoria 33, 45–52.

    Google Scholar 

  26. Segerberg, K.: 1982, Classical Propositional Operators, Oxford.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humberstone, I.L. Heterogeneous logic. Erkenntnis 29, 395–435 (1988). https://doi.org/10.1007/BF00183072

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00183072

Keywords

Navigation