Skip to main content
Log in

Isoperimetric inequalities, isometric actions and the higher Newman numbers

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

M will be a compact connected n-dimensional Riemannian manifold. If M contains a closed connected k-dimensional, 2 ≤ k < n, minimal immersed submanifold of M, we define the kth isoperimetric number of M, Ñ k (M), as the infimum of the volumes of all such submanifolds. We obtain a number of interesting estimates for Ñ k (M), for both general and special manifolds, which appear to be new.

Next we turn to isometric actions and a 1931 theorem of M. H. A. Newman involving the size of orbits of group actions on manifolds. We introduce the higher Newman numbers N k (M), 1 ≤ kn. Roughly speaking, if M admits isometric actions of compact connected Lie groups with k-dimensional principal orbits, N k (M) is defined as the infimum over all such actions of the maximum ‘volume’ of all maximal dimensional orbits. We observe that N k (M) ≥ Ñ k (M), 2 ≤ k < n, provided N k (M) is defined; hence our prior estimates for the isoperimetric numbers of M apply directly to the higher Newman numbers.

As a ‘best possible’ candidate we conjecture that N k (M) ≥ vol S k(i(M)/π), 1 ≤ kn, where i(M) denotes the radius of injectivity of M and S k(i(M)/π) denotes the standard k-sphere of radius i(M)/π. We verify the conjecture for various special cases. We conclude the paper by studying Newman's theorem for compact connected Lie groups with invariant metrics and obtaining a lower bound for the size of small subgroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger, M., ‘Une borne inférieure pour le volume d'une variété riemannienne en fonction du rayon injectivité’, Ann. Inst. Fourier 30 (1980), 259–265.

    Article  MathSciNet  MATH  Google Scholar 

  2. Berger, M., Gauduchon, P. and Mazet, E., ‘Le Spectre d'une Variété Riemannienne’, Lecture Notes in Math., Vol. 194, Springer-Verlag, Berlin, Heidelberg and New York, 1971.

    Google Scholar 

  3. Borel, A., ‘Le plan projectif des octaves es les spheres comme espaces homogenes’, C. R. Acad. Sci., Paris 230 (1960), 1378–1381.

    MathSciNet  MATH  Google Scholar 

  4. Chen, B. Y., ‘On the total curvature of immersed manifolds; II: Mean curvature and length of second fundamental form’, Amer. Math. J. 94 (1972), 899–909.

    MathSciNet  Google Scholar 

  5. Chen, B. Y., Geometry of Submanifolds, Dekker, New York, 1973.

    MATH  Google Scholar 

  6. Chen, B. Y., Geometry of Submanifolds and Its Applications, Sci. Univ. Tokyo, Tokyo, 1981.

    MATH  Google Scholar 

  7. Chen, B. Y. ‘On the First Eigenvalue of the Laplacian of Compact Minimal Submanifolds of Rank One Symmetric Spaces’, Chinese J. Math., 11 (1983).

  8. Chen, B. Y. and Yano, K., ‘On Submanifolds of Submanifolds of a Riemannian Manifold’, J. Math. Soc. Japan 23 (1971), 548–554.

    Article  MathSciNet  MATH  Google Scholar 

  9. Dress, A. ‘Newman's Theorems on Transformation Groups’, Topology 8 (1969), 203–207.

    Article  MathSciNet  MATH  Google Scholar 

  10. Hoffman, D. ‘The Diameter of Orbits of Compact Groups of Isometries, Newman's Theorem for Non-compact Manifolds’, Tran Amer. Math. Soc. 233 (1977), 223–233.

    MATH  Google Scholar 

  11. Hoffman, D. and Spruck, J. ‘Sobolev and Isoperimetric Inequalities for Riemannian Submanifolds’, Comm. Pure Applied Math. 27 (1974), 715–727; Errata, Comm. Pure Applied Math. 28 (1975), 765–766.

    Article  MathSciNet  MATH  Google Scholar 

  12. Hsiang, W. Y., ‘On Compact Homogeneous Minimal Submanifolds’, Proc. Nat. Acad. Sci., U.S.A. 56 (1966), 5–6.

    Article  MathSciNet  MATH  Google Scholar 

  13. Hsiang, W. Y. and Lawson, H. B. Jr, ‘Minimal Submanifolds of Low Cohomogenity’, J. Diff. Geom. 5 (1971), 1–38.

    MathSciNet  MATH  Google Scholar 

  14. Hsiang, W. T., Hsiang, W. Y. and Sterling, I. ‘On the Construction of Codimension Two Minimal Immersions of Exotic Spheres into Euclidean Spheres (preprint).

  15. Kobayashi, S. and Nomizu, K., Foundation of Differential Geometry, Vol. I, Interscience, New York and London, 1963.

    MATH  Google Scholar 

  16. Kobayaski, S. and Nomizu, K. Foundation of Differential Geometry, Vol. II, Interscience, New York and London, 1969.

    Google Scholar 

  17. Ku, M. C., ‘Newman's Theorem for Compact Riemannian Manifolds’, Proc. Amer. Soc. 58 (1976), 343–346.

    MathSciNet  MATH  Google Scholar 

  18. Lawson, H. B., Jr, Lectures on Minimal Submanifolds, I, Publish or Perish, 1980.

  19. Lawson, H. B., Jr ‘Rigidity Theorems in Rank-1 Symmetric Spaces’, J. Diff. Geom. 4 (1970), 349–357.

    MathSciNet  MATH  Google Scholar 

  20. Mann, L. N. and Sicks, J. L., ‘Newman's Theorem in the Riemannian Category’, Trans. Amer. Math. Soc. 210 (1975), 259–266.

    MathSciNet  MATH  Google Scholar 

  21. Montgomery, D. and Samelson, H., ‘Transformation Groups on Spheres’, Ann. Math. 44 (1943), 454–470.

    Article  MathSciNet  MATH  Google Scholar 

  22. Mostert, P. S., ‘On a Compact Lie Group Acting on a Manifold’, Ann. Math. 65 (1957), 447–455; Errata, Ann. Math. 66 (1957), 589.

    Article  MathSciNet  MATH  Google Scholar 

  23. Newmann, W. D., ‘3-Dimensional G-Manifolds with 2-Dimensional Orbits’, Proc. of the Conf. on Trans. Groups, New Orleans 1967, Springer-Verlag, Berlin, Heidelberg and New York, 1968, pp. 220–223.

    Google Scholar 

  24. Newman, M. H. A., ‘A Theorem on Periodic Transformations of Spaces, Quart. J. Math. 2 (1931), 1–9.

    Article  MATH  Google Scholar 

  25. Poncet, J., ‘Groups de Lie compacts de transformations de l'espace euclidien et les spheres comme espaces homogenes’, Comment. Math. Helv. 33 (1959), 109–120.

    Article  MathSciNet  MATH  Google Scholar 

  26. Spanier, E. H., Algebraic Topology, McGraw-Hill, New York, London, 1966.

    MATH  Google Scholar 

  27. Wang, H. C., ‘Compact Transformation Groups of S n with an (n-1)-Dimensional Orbit, Amer. J. Math. 82 (1960), 698–748.

    Article  MathSciNet  Google Scholar 

  28. Wallach, N. R., ‘Minimal Immersions of Symmetric Spaces into Spheres’, in Symmetric Spaces, Dekker, 1972, pp. 1–40.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ku, HT., Ku, MC. & Mann, L.N. Isoperimetric inequalities, isometric actions and the higher Newman numbers. Geom Dedicata 26, 341–359 (1988). https://doi.org/10.1007/BF00183026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00183026

Keywords

Navigation