Skip to main content
Log in

Barth type vanishing theorems

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

An Erratum to this article was published on 23 May 2009

Abstract

Let X be a smooth, projective, d-dimensional subvariety of ℙn(ℂ). Barth's theorem says that H q(X, Ωp X )=0 when pq and q+p≤2dn (if p=0 we must have q>0). It is very interesting to look for analogous vanishing theorems for H q(X, Ωp X (m)), m ∈ ℤ (see [S-S], [F], [S]). In this paper we prove some vanishing theorems for H q(X, Ωp X (1)), for H q(X, Ωp X (m)) when m≤−1, and, if dim(X)=n−2, for H q(X, Ω2 X (m)) and H q(X, S kΩ1 X (m)). We use standard techniques and some of our previous results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alzati, A. and Ottaviani, G. ‘Small codimension subvarieties of ℙn, Boll. Un. Mat. Ital. (7), 2-A (1988), 81–89.

    Google Scholar 

  2. Alzati, A. and Ottaviani, G. ‘A vanishing theorem for the ideal sheaf of codimension two subvarieties of ℙn’, Rend. Istit. Mat. Univ. Trieste.

  3. Barth, R. ‘Transplanting cohomology classes in complex projective space’, Amer. J. Math. 92 (1970), 951–957.

    Google Scholar 

  4. Bruckmann, P. ‘Some birational invariants of algebraic varieties’ Proc. Internat. Cong. Algebraic Geometry, Berlin, 1985; Teubner-Texte 92 (1986), 65–73.

    Google Scholar 

  5. Chang, M. C. and Ran, Z. ‘A vanishing theorem for symmetric differentials on projective varieties of small codimension’ (Preprint).

  6. Ein, L. ‘Vanishing theorems for varieties of low codimension’ in Algebraic Geometry Sundance 1986. Lecture Notes in Math. 1311, Springer, Berlin, Heidelberg, New York, 1988.

    Google Scholar 

  7. G. Faltings, ‘Verschwindungssatze und Untermannigfaltigkeiten kleiner Kodimension des Komplex-projektiven Raumes’, J. reine angew. Math. 326 (1980), 136–151.

    Google Scholar 

  8. J. Le Potier, ‘Annulation de la cohomologie à valeurs dans un fibré vectoriel holomorphe positif de rang quelconque’, Math. Ann. 218 (1975), 35–53.

    Google Scholar 

  9. Ran, Z. ‘Systèmes linéaires complets de sections hypersurfaces sur les variétés projectives de codimension 2’, C.R. Acad. Sci. Paris Série I, 298, 6 (1984), 111–112.

    Google Scholar 

  10. Schneider, M. ‘Symmetric differential forms as embedding obstructions and vanishing theorems’ (preprint).

  11. Shiffman, B. and Sommese, A. J. ‘Vanishing theorems on complex manifolds’ Progr. Math. 56 (1975).

  12. Zak, F. L. ‘Projections of algebraic varieties’, Mat. Sb. 116, No. 4 (1981), 593–602; English translation: Math. USSR-Sb 44, No. 4 (1983), 535–544.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10711-009-9382-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alzati, A. Barth type vanishing theorems. Geom Dedicata 44, 159–168 (1992). https://doi.org/10.1007/BF00182947

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00182947

Keywords

Navigation