On the space-filling heptahedra


A space-filling polyhedron is one whose replications can be packed to fill three-space completely. The space-filling tetrahedra, pentahedra and hexahedra have been previously investigated. The search is here extended to the convex space-filling heptahedra.

This is a preview of subscription content, log in to check access.


  1. 1.

    Goldberg, M., ‘On the Space-filling Hexahedra’, Geom. Dedicata 6, 99–108 (1977).

    Article  MATH  Google Scholar 

  2. 2.

    Goldberg, M., ‘Several New Space-filling Polyhedra’, Geom. Dedicata 5, 517–523 (1976).

    Article  MATH  Google Scholar 

  3. 3.

    Federico, P.J., ‘Polyhedra with 4 to 8 Faces’, Geom. Dedicata 3, 468–481 (1975).

    MathSciNet  Article  Google Scholar 

  4. 4.

    Federico, P.J., ‘The Number of Polyhedra’, Philips Res. Repts. 30, 220–231 (1975).

    MATH  Google Scholar 

  5. 5.

    Kershner, R.B., ‘On Paving the Plane’, Am. Math. Monthly 75, 839–844 (1968).

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Schattschneider, D., ‘General Paving Pattern of Richard James III’, Private communication.

  7. 7.

    Fejes Tóth, L., ‘What the Bees Know and What They Do Not Know’, Bull. Am. Math. Soc. 70, 468–481 (1964).

    Article  Google Scholar 

  8. 8.

    Wood, D.G., Space Enclosure Systems, The Orderly Sub-division of the Cube, The Ohio State University, 1973.

  9. 9.

    Critchlow, K., Order in Space, Viking Press, New York, 1970.

    Google Scholar 

  10. 10.

    Stein, S.K., ‘A Symmetric Star Body that Tiles as a Lattice’, Proc. Am. Math. Soc. 36, 543–548 (1972).

    Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goldberg, M. On the space-filling heptahedra. Geom Dedicata 7, 175–184 (1978). https://doi.org/10.1007/BF00181630

Download citation


  • Equilateral Triangle
  • Triangular Prism
  • Hexagonal Prism
  • Reidel Publishing Company
  • Honeycomb Cell