Skip to main content
Log in

The probability of generating a finite classical group

Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Two randomly chosen elements of a finite simple classical group G are shown to generate G with probability →1 as ‖G‖ → ∞. Extensions of this result are presented, along with applications to profinite groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aschbacher, M., ‘On the maximal subgroups of the finite classical groups’, Invent. Math. 76 (1984), 469–514.

    Google Scholar 

  2. Aschbacher, M., ‘Chevalley groups of type G 2(q) as the group of a trilinear form’, J. Algebra 109 (1987), 193–259.

    Google Scholar 

  3. Aschbacher, M., ‘The 27-dimensional module for E 6’ I–IV. I: Invent. Math. 89 (1987), 159–195; II: J. London Math. Soc. 37 (1988) 275–293; III: Trans. Amer. Math. Soc. (to appear); IV: J. Algebra (to appear).

    Google Scholar 

  4. Aschbacher, M., ‘The maximal subgroups of E 6’ (to appear).

  5. Babai, L., ‘The probability of generating the symmetric group’, J. Combin. Theory (A) 52 (1989), 148–153.

    Google Scholar 

  6. Bovey, J. D., The probability that some power of a permutation has small degree, Bull. London. Math. Soc. 12 (1980), 47–51.

    Google Scholar 

  7. Carter, R., Simple Groups of Lie Type, Wiley, London; New York; Sydney; Toronto, 1972.

    Google Scholar 

  8. Carter, R., ‘Conjugacy classes in the Weyl group’, Compositio Math. 25 (1972), 1–59.

    Article  CAS  PubMed  Google Scholar 

  9. Cooperstein, B. N., Maximal subgroups of G 2(2n), J. Algebra 70 (1981), 23–36.

    Google Scholar 

  10. Dickson, L. E., Linear Groups, with an Exposition of Galois Theory, Dover, New York, 1958.

    Google Scholar 

  11. Dixon, J. D., ‘The probability of generating the symmetric group’, Math. Z. 110 (1969), 199–205.

    Google Scholar 

  12. Fried, M. D. and Jarden, M., Field Arithmetic, Springer, Berlin; Heidelberg, 1986.

    Google Scholar 

  13. Gorenstein, D., Finite Groups, Harper and Row, New York, 1968.

    Google Scholar 

  14. Hall, P., ‘The Eulerian function of a group’, Quart J. Math. 7 (1936), 134–151.

    Google Scholar 

  15. Ilani, I., ‘Counting finite index subgroups and the P. Hall enumeration principle’ (to appear in Israel J. Math.).

  16. Kleidman, P. B., ‘The maximal subgroups of the finite 8-dimensional orthogonal groups PΦ+ 8 (q) and of their automorphism groups’, J. Algebra 110 (1987), 173–242.

    Google Scholar 

  17. Kleidman, P. B., ‘The maximal subgroups of the finite Steinberg triality groups 3 D 4(q) and of their automorphism groups’, J. Algebra 115 (1988), 182–199.

    Google Scholar 

  18. Kleidman, P. B., ‘The maximal subgroups of the Chevalley groups G 2(q) with q odd, the Ree groups 2 G 2(q), and their automorphism groups’, J. Algebra 117 (1988), 30–71.

    Google Scholar 

  19. Kleidman, P. B., ‘The maximal subgroups of automorphism groups of E 6(q) inducing a graph automorphism’ (to appear).

  20. Landazuri, V. and Seitz, G. M., ‘On the minimal degrees of projective representations of the finite Chevalley groups’, J. Algebra 32 (1974), 418–443.

    Google Scholar 

  21. Liebeck, M. W., ‘On the order of maximal subgroups of the finite classical groups’, Proc. London Math. Soc. 50 (1985), 426–446.

    Google Scholar 

  22. Liebeck, M. W. and Seitz, G. M., ‘Maximal subgroups of exceptional groups of Lie type, finite and algebraic’, Geom. Dedicata 35 (1990), 353–387.

    Google Scholar 

  23. Lang, S. and Weil, A., ‘Number of points of varieties in finite fields’, Amer. J. Math. 76 (1954), 819–827.

    Google Scholar 

  24. Meier, D. and Wiegold, J., ‘Growth sequences in finite groups, V’, Austral. Math. Soc. 31 (1981), 374–375.

    Google Scholar 

  25. Seitz, G.M., ‘The root subgroups for maximal tori in finite groups of Lie type’, Pacific J. Math. 106 (1983), 153–244.

    Google Scholar 

  26. Steinberg, R., ‘Representations of algebraic groups’, Nagoya Math. J. 22 (1963), 33–56.

    Google Scholar 

  27. Suzuki, M., ‘On a class of doubly transitive groups’, Ann. of Math. 75 (1962), 105–145.

    Google Scholar 

  28. Wagner, A., ‘An observation on the degrees of projective representations of the symmetric and alternating groups over an arbitrary field’, Arch. Math. 29 (1977), 583–589.

    Google Scholar 

  29. Wiegold, J., ‘Growth sequences of finite groups’, J. Austral. Math. Soc. 17 (1974), 133–141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For Jacques Tits on his sixtieth birthday

Research by W.M.K. was supported in part by the NSF and the NSA; and research by A.L. was supported in part by the BSF.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kantor, W.M., Lubotzky, A. The probability of generating a finite classical group. Geom Dedicata 36, 67–87 (1990). https://doi.org/10.1007/BF00181465

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00181465

Keywords

Navigation