Skip to main content
Log in

Influence of static middle ear pressure on transiently evoked otoacoustic emissions and distortion products

  • Original Paper
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Otoacoustic emissions (OAE) are influenced in their amplitude and frequency spectra by the middle ear. The effects of changes in the middle ear transmission mechanisms on transiently evoked OAE (TEOAE) and distortion product emissions (DPOAE) were investigated as a function of static ear canal pressure in 25 normal-hearing test persons aged 18–35 years. The ear canal pressure was varied stepwise between positive and negative values of 200 daPa. TEOAE and DPOAE amplitudes were attenuated significantly with changes of the static ear canal pressure, with greatest changes at low frequencies (< 2 kHz). The alterations of OAE amplitude were slightly dependent on the polarity of the pressure, with positive pressure producing a greater attenuation (0.6 dB). The results demonstrate that changes in middle ear impedance can cause a misinterpretation of OAE. To avoid this problem, tympanometry should always precede OAE measurements. Alternatively, both methods can be combined using one acoustic probe, so that the emissions can be evoked at the peak of middle ear compliance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonfils PA, Uziel A, Pujol R (1988) Screening for auditory dysfunction in infants by evoked otoacoustic emissions. Arch Otolaryngol Head Neck Surg 114:887–890

    Google Scholar 

  2. Brown AM, McDowell B, Forge A (1989) Acoustic distorsion products can be used to monitor the effects of chronic gentamycin treatment. Hear Res 42:143–156

    Google Scholar 

  3. Erwig H, Blömer E, Bauer HH (1991) Zur Evaluation transitorisch evozierter otoakustischer Emissionen bei Kindern mit Tubenbelüftungsstörungen. Laryngol Rhinol Otol 70:635–640

    Google Scholar 

  4. Harris FP, Lonsbury-Martin BL, Stagner BB, Coats AC, Martin GK (1989) Acoustic distortion products in humans: systematic changes in amplitude as a function of f2/f1 ratio. J Acoust Soc Am 85:220–229

    Google Scholar 

  5. Hauser R (1992) Die Wirkung des systematischen Mittelohrdruckänderung auf transitorisch evozierte otoakustische Emissionen — eine Druckkammerstudie. Laryngol Rhinol Otol 71: 632–636

    Google Scholar 

  6. Hauser R, Löhle E, Pedersen P (1989) Zur klinischen Anwendung Click-evozierter otoakustischer Emissionen an der Freiburger HNO-Klinik. Laryngol Rhinol Otol 68:661–666

    Google Scholar 

  7. Hauser R, Probst R, Harris FP (1993) Effects of atmospheric pressure variations on spontaneous, transiently, and distortion product otoacoustic emissions in normal human ears. Hear Res 69:133–145

    Google Scholar 

  8. Johansen H (1948) Relations of audiograms to the impedance formula. Acta Otolaryngol Stockh) [Suppl] 74:65–75

    Google Scholar 

  9. Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391

    Google Scholar 

  10. Kemp DT (1981) Physiological active cochlear micromechanics — one source of tinnitus. In: Evered D, Lawrenson G (eds) Tinnitus. CIBA Foundation Symposium. Pitman, London, pp 54–81

    Google Scholar 

  11. Kemp DT (1986) Acoustic emission cochleography — practical aspects. Scand Audiol [Suppl] 25:71–82

    Google Scholar 

  12. Kemp DT (1990) A guide to the effective use of otoacoustic emissions. Ear Hear 11:93–105

    Google Scholar 

  13. Kim DO (1986) Active and non-linear cochlear biomechanics and the role of outer-hair-cell subsystem in the mamalian auditory system. Hear Res 22:105–114

    Google Scholar 

  14. Lamprecht A (1991) Evozierte otoakustische Emissionen bei normalhörenden und schwerhörigen Erwachsenen und Kindern. Laryngol Rhinol Otol 70:1–4

    Google Scholar 

  15. Naeve SL, Margolis RM, Levine SC, Fournier EM (1992) Effect of ear-canal air pressure on evoked otoacoustic emissions. J Acoust Soc Am 91:2091–2095

    Google Scholar 

  16. Neely ST, Kim DO (1983) An active cochlear model showing sharp tuning and high sensitivity. Hear Res 9:123–130

    Google Scholar 

  17. Plinkert PK, Kröber S (1991) Früherkennung ciner Cisplatin-Ototoxizität durch evozierte otoakustische Emissionen. Laryngol Rhinol Otol 70:457–462

    Google Scholar 

  18. Plinkert PK, Zenner HP (1992) Sprachverständnis und otoakustische Emissionen durch Vorverarbeitung des Schalls im Innenohr. HNO 40:111–122

    Google Scholar 

  19. Plinkert PK, Sesterhenn G, Arold R, Zenner HP (1990) Evaluation of otoacoustic emissions in high-risk infants by using an easy and rapid objective auditory screening method. Eur Arch Otorhinolaryngol 247:356–360

    Google Scholar 

  20. Probst R (1990) Otoacoustic emissions: an overview. In: Pfaltz CR (ed) New aspects of cochlear mechanics and inner ear pathophysiology. Advances in oto-rhinolaryngology. Karger, Basel, pp 1–91

    Google Scholar 

  21. Schloth E, Zwicker E (1983) Mechanical and acoustical influences on spontaneous otoacoustic emissions. Hear Res 11: 285–293

    Google Scholar 

  22. Wilson JP (1986) Otoacoustic emissions and tinnitus. Scand Audiol [Suppl] 25:109–119

    Google Scholar 

  23. Wilson JP, Sutton GJ (1981) Acoustic correlates of tonal tinnitus. In: Evered D, Lawrenson G (eds) Tinnitus. CIBA Foundation Symposium. Pitman, London, pp 82–107

    Google Scholar 

  24. Zenner HP (1986) Motile responses in outer hair cells. Hear Res 22:83–90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plinkert, P.K., Bootz, F. & Voßieck, T. Influence of static middle ear pressure on transiently evoked otoacoustic emissions and distortion products. Eur Arch Otorhinolaryngol 251, 95–99 (1994). https://doi.org/10.1007/BF00179900

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00179900

Key words

Navigation