Skip to main content
Log in

Raman microprobe: a diagnostic tool for processed silicon. Analysis of microindented silicon

  • Papers
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Laser-assisted processes are currently used in silicon technology. The response of the material to the laser beam depends strongly on its own physical properties and on the laser power density. The use of a microRaman system, allows the structural characteristics of the material to be analysed by varying the excitation laser power density on the sample over a large power range with a submicrometre lateral resolution. Results are reported on microindented crystalline silicon, showing that changes in the physical properties of the material, introducing grain boundaries, dislocations and cracking, result in a strong modification of the Raman spectrum. These spectral changes are enhanced for increasing laser power densities. Several mechanisms are pointed out as possible sources of the observed spectral modifications. These results show that Raman microprobe is a very promising technique for the diagnosis of technologically processed semiconductors and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. AUSTON, J. A. GOLOVCHENKO, P. R. SMITH, C. M. SURKO, and T. N. C. VENKATESAN, Appl. Phys. Lett. 33, (1978) 539.

    Google Scholar 

  2. J. F. MCCLELLAND and R. N. KNISELEY, Bull. Am. Phys. Soc, 24 (1979) 315.

    Google Scholar 

  3. H. W. LO and A. COMPAAN, J. Appl. Phys 51 (1980) 1565.

    Google Scholar 

  4. G. KOLB, TH. SALBERT and G. ABSTREITER, ibid. J. Appl. Phys 69 (1991) 3387.

  5. W. C. TANG, H. J. ROSEN, S. GUHA and A. MADHUKAR, Appl. Phys. Lett. 58 (1991) 1644.

    Google Scholar 

  6. I. H. CAMPBELL and P. M. FAUCHET, ibid. Appl. Phys. Lett. 57 (1990) 10.

  7. J. RAPTIS, E. LIAROKAPIS and E. ANNASTASSAKIS, ibid. Appl. Phys. Lett. 44 (1984) 125.

  8. M. YAMADA, K. NAMBU, Y. ITOH and K. YAMAMOTO, J. Appl. Phys. 59 (1986) 1350.

    Google Scholar 

  9. E. LIAROKAPIS and E. ANASTASSAKIS, Phys. Scripta 38 (1988) 84.

    Google Scholar 

  10. F. CERDEIRA, T. A. FJELDLY and M. CARDONA, Phys. Rev. B8 (1973) 4734.

    Google Scholar 

  11. M. LAX, J. Appl. Phys. 48 (1977) 3919.

    Google Scholar 

  12. IdemM. LAX Appl. Phys. Lett. 33 (1977) 3919.

  13. D. R. CLARKE, M. C. KROLL, P. D. KIRCHNER, R. F. COOK and B. J. HOCKEY, Phys. Rev. Lett. 60 (1988) 2156.

    Google Scholar 

  14. E. LIAROKAPIS and E. ANASTASSAKIS, J. Appl. Phys. 63 (1988) 2615.

    Google Scholar 

  15. Y. OKADA and Y. TOKUMARU, J. Appl. Phys. 56 (1984) 314.

    Google Scholar 

  16. R. J. NEMANICH and D. HANEMAN, Appl. Phys. Lett. 40 (1982) 785.

    Google Scholar 

  17. B. A. WEINSTEIN and G. J. PIERMARINI, Phys. Rev. B. 12 (1975) 1172.

    Google Scholar 

  18. E. ANASTASSAKIS, A. PINCZUK, E. BURSTEIN, F. H. POLLAK and M. CARDONA, Solid State Commun. 8 (1970) 133.

    Google Scholar 

  19. F. CERDEIRA and M. CARDONA, Phys. Rev. B 5 (1972) 1440.

    Google Scholar 

  20. G. CONTRERAS, A. K. SOOD, M. CARDONA and A. COMPAAN, Solid State Commun. 49 (1984) 303.

    Google Scholar 

  21. J. H. WERNER, Inst. Phys. Conf. Ser. 104 (1989) 63.

    Google Scholar 

  22. H. ENGSTROM and J. B. BATES, J. Appl. Phys. 50 (1979) 2921.

    Google Scholar 

  23. T. R. HART, R. L. AGGARWALL and B. LAX, Phys. Rev. B. 1 (1970) 638.

    Google Scholar 

  24. P. A. TEMPLE and C. E. HATHAWAY, ibid. Phys. Rev. B. 7 (1973) 3685.

  25. H. TANG and I. P. HERMAN, ibid. Phys. Rev. B. 43 (1991) 2229.

  26. A. PÉREZ-RODRÍGUEZ, A. CORNET, J. JIMÉNEZ, J. L. MORANTE, P. L. F. HEMMENT and K. P. HOMEWOOD, J. Appl. Phys. 70 (1991) 1676.

    Google Scholar 

  27. A. PÉREZ, J. PORTILLO, A. CORNET, J. JIMÉNEZ, J. R. MORANTE, P. L. F. HEMMENT and K. P. HOMEWOOD, Nucl. Instrum. Meth. Phys. Res. B 55 (1991) 717.

    Google Scholar 

  28. E. MARTIN, J. JIMÉNEZ, A. PÉREZ-RODRÍGUEZ and J. R. MORANTE, Lett. 15 (1992) 122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez, J., Martín, E., Torres, A. et al. Raman microprobe: a diagnostic tool for processed silicon. Analysis of microindented silicon. J Mater Sci: Mater Electron 4, 271–277 (1993). https://doi.org/10.1007/BF00179223

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00179223

Keywords

Navigation