Skip to main content
Log in

Cochlear blood flow following temporary occlusion of the cerebellar arteries

  • Original Investigations
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Summary

In order to induce acute transient local blood flow impairment in the guinea pig cochlea, terminal vessels arising from the proximal and middle third of the basilar artery and from the rostral part of the collateral vertebral artery near their junction were occluded by temporary (1–2 min) compression. Clear identification of the anterior inferior cerebellar artery was impeded due to great variation in branching of the cerebellar arteries. To quantify the effect of the vascular occlusion on the cochlear microcirculation, laser Doppler flowmetry was used. Successive compression of the cerebellar arteries resulted in individually differentiated effects on the Doppler signal from the cochlea. In about half of the experiments there was a decrease in the laser signal to 25–55% of the initial level, while in the other cases no clear decrease occurred. Proximal obstruction of the basilar artery was found to reduce the cochlear blood flow up to 10–25% of its initial level, indicating that the Doppler signal primarily reflects microcirculation within the membranous cochlea. The findings are discussed with regard to their significance as an animal model for acute transient cochlear hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afzelius L-E, Aursnes J (1979) Structural changes in the organ of Corti of the guinea pig after obstruction of the arterial blood flow to the inner ear. Acta Otolaryngol (Stockh) 88:183–186

    Google Scholar 

  2. Axelsson A (1968) The vascular anatomy of the cochlea in the guinea pig and in man. Acta Otolaryngol (Stockh) [Suppl] 243:1–134

    Google Scholar 

  3. Bergmann K, Flemming B (1982) Perilymphatische Perfusion der Meerschweinchen-Kochlea mit einem kiinstlichen Sauerstoffträger (Fluorokarbon-Emulsion). In: Jakobi H, Kuhl KD, Lotz P (eds) Cochlea-Forschung, VI. Symposium 1980, Halle. Martin-Luther-Universität, Wiss. Beiträge 1982/49 (R 76), Halle (Saale), GDR, pp 40–44

    Google Scholar 

  4. Bernstein JM, Silverstein H (1966) Anterior cerebellar and labyrinthine arteries. A study in the cat. Arch Otolaryngol 83:422–435

    Google Scholar 

  5. Costa OA, Thalmann R, Covell WP (1966) Arterial perfusion of the inner ear. I. The method. Laryngoscope 76:1874–1888

    Google Scholar 

  6. Kimura R, Perlman HB (1958) Arterial obstruction of the labyrinth. I. Cochlear changes. Ann Otol Rhinol Laryngol 67:5–24

    Google Scholar 

  7. Koburg E, Maass B (1979) Durchblutung des Innenohres. In: Zöllner F (ed) Hals-Nasen-Ohren-Heilkunde in Praxis and Klinik, vol 5. Ohr I, 2nd edn. Thieme, Stuttgart, pp 5.1–5.28

    Google Scholar 

  8. Konishi T, Butler RA, Fernandez C (1961) Effect of anoxia on cochlear potentials. J Acoust Soc Am 33:349–356

    Google Scholar 

  9. Kusakari J, Kambayashi J, Kobayashi T, Rokugo M, Kawamoto K (1980) Reversibility of the endolymphatic potential after transient anoxia. Tohoku J Exp Med 131:1–5

    Google Scholar 

  10. Kusakari J, Kambayashi J, Kobayashi T, Rokugo M, Arakawa E, Ohyama K, Kaneko Y (1981) The effect of transient anoxia upon the cochlear potentials. Auris Nasus Larynx 8:55–64

    Google Scholar 

  11. Lawrence M (1980) Control mechanisms of inner ear microcirculation. Am J Otolaryngol 1: 324–333

    Google Scholar 

  12. Marcus DC, Rokugo M, Thalmann R (1985) Effects of barium and ion substitutions in artificial blood on endocochlear potential. Hear Res 17:79–86

    Google Scholar 

  13. Nabeya D (1923) A study in the comparative anatomy of the blood-vascular system of the internal ear in mammalia and in homo (in Japanese). Acta Sch Med Univ Kyoto 6:1–132

    Google Scholar 

  14. Perlman HB, Kimura R (1957) Experimental obstruction of venous drainage and arterial supply of the inner ear. Ann Otol Rhinol Laryngol 66: 537–546

    Google Scholar 

  15. Perlman HB, Kimura R, Fernandez C (1959) Experiments on temporary obstruction of the internal auditory artery. Laryngoscope 69:591–613

    Google Scholar 

  16. Randolf H-B (1988) Untersuchungen über die kochleäre Durchblutung mit Anwendung des Laser-Doppler-Meßver-fahrens im Tierexperiment. Thesis, Berlin

  17. Ritter K (1978) Die Gefäße des Innenohrs. Arch Otorhinolaryngol 219:115–177

    Google Scholar 

  18. Scheibe F, Haupt H, Nuttall AL, Ludwig C (1990) Laser Doppler measurements of cochlear blood flow during loud sound presentation. Eur Arch Otorhinolaryngol 247:84–88

    Google Scholar 

  19. Scheibe F, Ludwig C, Haupt H, Flemming B (1989) Physiologische Parameter des Meerschweinchens unter Langzeitnarkose mit kontrollierter Beatmung. Z Versuchstierkd 32: 25–31

    Google Scholar 

  20. Short SO, Goodwin PC, Kaplan IN, Miller JM (1985) Measuring cochlear blood flow by laser Doppler spectroscopy. Otolaryngol Head Neck Surg 93:786–793

    Google Scholar 

  21. Wada J, Paloheimo S, Thalmann I, Bohne BA, Thalmann R (1979) Maintenance of cochlear function with artificial oxygen carriers. Laryngoscope 89:1457–1473

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randolf, H.B., Haupt, H. & Scheibe, F. Cochlear blood flow following temporary occlusion of the cerebellar arteries. Eur Arch Otorhinolaryngol 247, 226–228 (1990). https://doi.org/10.1007/BF00178990

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00178990

Key words

Navigation