Skip to main content
Log in

Evidence for phylogenetic congruence among sulfur-oxidizing chemoautotrophic bacterial endosymbionts and their bivalve hosts

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Sulfur-oxidizing chemoautotrophic (thioautotrophic) bacteria are now known to occur as endosymbionts in phylogenetically diverse bivalve hosts found in a wide variety of marine environments. The evolutionary origins of these symbioses, however, have remained obscure. Comparative 16S rRNA sequence analysis was used to investigate whether thioautotrophic endosymbionts are monophyletic or polyphyletic in origin and to assess whether phylogenetic relationships inferred among these symbionts reflect those inferred among their hosts. 16S rRNA gene sequences determined for endosymbionts from nine newly examined bivalve species from three families (Vesicomyidae, Lucinidae, and Solemyidae) were compared with previously published 16S rRNA sequences of thioautotrophic symbionts and free-living bacteria. Distance and parsimony methods were used to infer phylogenetic relationships among these bacteria. All newly examined symbionts fall within the gamma subdivision of the Proteobacteria, in clusters containing previously examined symbiotic thioautotrophs. The closest free-living relatives of these symbionts are bacteria of the genus Thiomicrospira. Symbionts of the bivalve superfamily Lucinacea and the family Vesicomyidae each form distinct monophyletic lineages which are strongly supported by bootstrap analysis, demonstrating that host phylogenies inferred from morphological and fossil evidence are congruent with phylogenies inferred for their respective symbionts by molecular sequence analysis. The observed congruence between host and symbiont phylogenies indicates shared evolutionary history of hosts and symbiont lineages and suggests an ancient origin for these symbioses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen JA (1958) On the basic form and adaptations to habitat in the Lucinacea (Eulamellibranchia). Philos Trans R Soc (Ser B) 684:421–482

    Google Scholar 

  • Bernard FR (1974) The genus Calyptogena British Columbia with a description of a new species. Venus 33:11–22

    Google Scholar 

  • Boss KJ (1970) Fimbria and its lucinoid affinities (Mollusca; Bivalvia). Breviora 350:1–16

    Google Scholar 

  • Brooks DR (1988) Macroevolutionary comparisons of host and parasite phylogenies. Ann Rev Ecol Syst 19:235–259

    Google Scholar 

  • Campbell KA (1992) Recognition of a Mio-Pliocene cold seep setting from the northeast Pacific Convergent Margin, Washington, U.S.A. Palaios 7:422–433

    Google Scholar 

  • Cavanaugh CM (1985) Symbiosis of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. Biol Soc Wash Bull 6:373–388

    Google Scholar 

  • Cavanaugh CM (1993) Microbial symbiosis: patterns of diversity in the marine environment. Am Zool, in press

  • CoBabe EA (1991) Lucinid bivalve evolution and the detection of chemosynthesis in the fossil record. PhD thesis, Harvard University, Cambridge, MA

    Google Scholar 

  • Cunningham CW, Buss LW, Anderson C (1991) Molecular and geologic evidence of shared history between hermit crabs and the symbiotic genus Hydractinia. Evolution 45:1301–1316

    CAS  Google Scholar 

  • Distel DL, Delong EF, Waterbury JB (1991) Phylogenetic characterization and in situ localization of the bacterial symbiont of shipworms (Teredinidae: Bivalvia) by using 16S rRNA sequence analysis and oligonucleotide probe hybridization. Appl Environ Microbiol 57:2376–2382

    CAS  PubMed  Google Scholar 

  • Distel DL, Felbeck H (1988) Pathways of inorganic carbon fixation in the endosymbiont bearing lucinid clam Lucinoma aequizonata: part 1. Purification and characterization of the endosymbiotic bacteria. J Exp Zool 247:1–10

    CAS  Google Scholar 

  • Distel DL, Lane DJ, Olsen GJ, Giovannoni SJ, Pace B, Pace NR, Stahl DA, Felbeck H (1988) Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. J Bacteriol 170:2506–2510

    CAS  PubMed  Google Scholar 

  • Distel DL, Wood AP (1992) Characterization of the gill symbiont of Thyasira flexuosa (Thyasiridae: Bivalvia) by use of polymerase chain reaction and 16S rRNA sequence analysis. J Bacteriol 174: 6317–6320

    CAS  PubMed  Google Scholar 

  • Eisen JA, Smith SW, Cavanaugh CM (1992) Phylogenetic relationships of chemoamotrophic bacterial symbionts of Solemya velum Say (Mollusca: Bivalvia) determined by 16S rRNA gene sequence analysis. J Bacteriol 174:3416–3421

    CAS  PubMed  Google Scholar 

  • Felbeck H, Distel DL (1992) Prokaryotic symbionts in marine invertebrates. In: Ballows A, Trüper H, Harder W, Schleifer KH (eds) The Prokaryotes. Springer-Verlag, New York, pp 3891–3906

    Google Scholar 

  • Felsenstein J (1989) Phylip-Phylogeny inference package. Cladistics 5:164–166

    Google Scholar 

  • Fiala-Médioni A, Felbeck H (1990) Autotrophic processes in invertebrate nutrition: bacterial symbiosis in bivalve molluscs. Comp Physiol 5:49–69

    Google Scholar 

  • Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev Aquat Sci 2:399–436

    CAS  Google Scholar 

  • Goedert JL, Squires RL (1993) First oligocene records of Calyptogena (Bivalvia: Vesicomyidae). Veliger 36:72–77

    Google Scholar 

  • Grey MW (1989) Origin and evolution of mitochondrial DNA. Ann Rev Cell Biol 5:25–50

    Google Scholar 

  • Haygood MG, Distel DK (1993) Bioluminescent symbionts of flashlight fishes and deep-sea anglerfishes form unique lineages related to Vibrios. Nature 363:154–156

    Article  CAS  PubMed  Google Scholar 

  • Haygood MG, Distel DL, Herring PJ (1992) Polymerase chain reaction and 16S rRNA gene sequences from the luminous bacterial symbionts of two deep-sea anglerfishes. J Mar Biel Assoc UK 72: 149–159

    CAS  Google Scholar 

  • Hultman T, Stahl S, Hornes E, Uhlen M (1989) Direct solid phase sequencing of genomic and plasmid DNA using magnetic beads as solid support. Nucleic Acids Res 17:4937–4946

    CAS  PubMed  Google Scholar 

  • Lane DJ (1991) 26S/23S sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York, 115–175

    Google Scholar 

  • Lane DJ, Harrison AP, Stahl D, Pace B, Giovannoni SJ, Olsen GJ, Pace NR (1992) Evolutionary relationships among sulfur- and iron-oxidizing eubacteria. J Bacteriol 174:269–278

    CAS  PubMed  Google Scholar 

  • MacDonell MT, Colwell RR (1985) Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Schewanella. Syst Appl Microbiol 6:171–182

    CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. Cold Spring Harbor Laboratories, Cold Spring Harbor

    Google Scholar 

  • Margulis L, Fester R (1991) Symbiosis as a source of evolutionary innovation. The MIT Press, Cambridge, MA

    Google Scholar 

  • McAlester AL (1966) Systematics, affinities and life habits of Babinka, a transitional Ordovician lucinoid bivalve. Paleontology 8:231–246

    Google Scholar 

  • McFall-Ngai MJ, Ruby EG (1992) Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterium mutualism. Science 254:1491–1494

    Google Scholar 

  • Munson MA, Baumann P, Clark MA, Baumann L, Moran NA, Voegtlin DJ, Campbell BC (1991) Evidence for the establishment of aphid-eubacterium endosymbiosis in an ancestor of four aphid families. J Bact 173:6321–6324

    CAS  PubMed  Google Scholar 

  • Newell ND (1969) Classification of Bivalvia. In: Treatise on invertebrate paleontology. The Geological Society of America and The University of Kansas, vol 1, pp N205-N224

    Google Scholar 

  • Olsen GJ, Overbeck R, Larson N, Marsh TL, McCaughey MJ, Maciukenas MA, Kuan WM, Macke TJ, Xing Y, Woese CR (1992) Ribosomal database project. NAR (20) supplement: 2199–2200

  • Pojeta J Jr. (1971) Review of Ordovician pelecypods. US Geol Survey Prof Paper 695:46

    Google Scholar 

  • Pojeta J Jr. (1978) The origin and early taxonomic diversification of pelecypods. Philos Trans R Soc Lend B 284:225–243

    Google Scholar 

  • Purchon RD (1987) Classification and evolution of the bivalvia: an analytical study. Philos Trans R Soc Lond B316:277–302

    Google Scholar 

  • Reid RGB, Brand DG (1986) Sulfide-oxidizing symbiosis in Lucinaceans: implications for bivalve evolution. Veliger 29:3–24

    Google Scholar 

  • Rowan R, Powers DA (1991) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science 251:1348–1350

    CAS  Google Scholar 

  • Ruby EG, Jannasch HW (1982) Physiological characteristics of Thiomicrospira sp. strain L-12 isolated from deep-sea hydrothermal vents. J Bacteriol 149:161–165

    CAS  PubMed  Google Scholar 

  • Ruby EG, Wirsen CO, Jannasch HW (1981) Chemolithotrophic sulfur-oxidizing bacteria from the Galapagos rift hydrothermal vents. Appl Environ Microbiol 42:317–324

    CAS  PubMed  Google Scholar 

  • Smith CR, Kukert H, Wheatcroft RA, Jumars PA, Deming JW (1989) Vent fauna on whale remains. Nature 341:27–28

    Google Scholar 

  • Smith SW, Overbeek R, Olsen G, Woese C, Gillevet PM, Gilbert W (1992) Genetic data environment and the Harvard genome database. In: Genome mapping and sequencing, May 6–10. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, p 190

    Google Scholar 

  • Squires RL, Goedert JL (1991) New late Eocene mollusks from localized limestone deposits formed by subduction-related methane seeps, southwestern Washington. J Paleontol 65:412–416

    Google Scholar 

  • Stackebrandt E, Murray RGE, Trüper HG (1988) Proteobacteria classis nov., a name for the phylogenetic taxon that includes the purple bacteria and their relatives. Int J Syst Bacteriol 40:213–216

    Google Scholar 

  • Stahl DA, Lane DJ, Olsen GJ, Pace NR (1984) Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science 224:409–411

    CAS  Google Scholar 

  • Turner RD (1985) Notes on mollusks of deep-sea vents and reducing sediments. Am Malacol Bull 1:23–24

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed  Google Scholar 

  • Wood AP, Kelly DP (1993) Reclassification of Thiobacillus thyasiris as Thiomicrospira thyasirae comb. nov., an organism exhibiting pleomorphism in response to environmental conditions. Arch Microbiol 159:45–47

    Article  CAS  Google Scholar 

  • Zharkikh A, Li WH (1992) Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences. I. Four taxa with a molecular clock. Mol Biol Evol 9:1119–1147:543–546

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: D.L. Distel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Distel, D.L., Felbeck, H. & Cavanaugh, C.M. Evidence for phylogenetic congruence among sulfur-oxidizing chemoautotrophic bacterial endosymbionts and their bivalve hosts. J Mol Evol 38, 533–542 (1994). https://doi.org/10.1007/BF00178852

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00178852

Key words

Navigation