Skip to main content

Advertisement

Log in

Nucleotide composition as a driving force in the evolution of retroviruses

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

All complete retrovirus sequences in the GenEMBL database were examined with the goal of assessing possible relationships between the nucleotide composition of retroviral genomes, the amino acid composition of retroviral proteins, and evolutionary strategies used by retroviruses. The results demonstrated that the genome of each viral lineage has a characteristic base composition and that the variations between groups are related to retroviral phylogeny. By analogy to microbial species, we suggest that the variations arise from group-specific patterns of directional mutations where the bias can be exerted on any of the four nucleotides. It is most likely that the mutational patterns are introduced during reverse transcription, and a direct participation of reverse transcriptase in the process is suspected.

A straightforward strategy was used to analyze the compositional relationship between nucleotides and encoded amino acids. The procedure entailed calculations of amino acid frequencies from nucleotide content and the comparison of the calculated values to the observed amino acid frequencies in retroviruses. The results revealed an excellent correspondence between variation in genomic base composition and variation in amino acid composition of proteins with the compositional differences extending into all major coding regions of the viruses. Because of the magnitude and dispersion of these effects, and because of the nonconservative nature of many of the substitutions between groups with different genomic biases, we suggest that the variations in protein composition driven by biased nucleotide frequencies are an important factor in shaping the characteristic phenotypes of the different viral lineages.

A clue to the nature of the evolutionary forces that are responsible for the generation of nucleotide biases was provided by the observation that viruses with radically different base frequencies most often inhabit the same cell type. This observation, along with analysis of amino acid and nucleotide replacement patterns between and within reverse transcriptase sequences from the various groups, permitted us to advance a model for the evolution of retroviruses. According to the model, speciation could initiate when daughter virions from a single progenitor vary in the direction of their mutational bias. These variations would exert a pleiotropic effect on the frequencies of nucleotides in all viral genes and consequently on the frequencies of amino acids in the encoded proteins. The variants with the most extreme compositional differences would have a selective advantage because their different precursor requirements would enable them to occupy different ecological niches within a single cell. Once the viruses have adapted to different amino acid compositions, continued presence of the diverging viruses in the same cell would no longer be needed to maintain different phenotypes. Each virus would then possess a distinct mutational bias which would fix the patterns of amino acid substitution. These patterns would favor a degree of conservation of the phenotype in the viral progeny, thus promoting the concerted evolution of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argos P, Rossmann MG, Grau UM, Zuber H, Frank G, Tratschin JD (1979) Thermal stability and protein structure. Biochemistry 18:5698–5703

    CAS  PubMed  Google Scholar 

  • Argos P (1988) A sequence motif in many polymerases. Nucleic Acids Res 16:9909–9916

    CAS  PubMed  Google Scholar 

  • Barber AM, Hizi A, Maizel JV, Hughes SH (1990) HIV-1 reverse transcriptase: structure predictions for the polymerase domain. AIDS Res Human Retroviruses 6:1061–1072

    CAS  Google Scholar 

  • Bernardi G (1989) The isochore organization of the human genome. Annu Rev Genet 23:637–661

    Article  CAS  PubMed  Google Scholar 

  • Bernardi G, Bernardi G (1985) Codon usage and genome composition. J Mol Evol 22:363–365

    Article  CAS  PubMed  Google Scholar 

  • Bernardi G, Bernardi G (1986) Compositional constraints and genome evolution. J Mol Evol 24:1–11

    Article  CAS  PubMed  Google Scholar 

  • Bernardi G, Bernardi G (1991) Compositional properties of nuclear genes from cold-blooded vertebrates. J Mol Evol 33:57–67

    CAS  Google Scholar 

  • Bernardi G, Olfsson B, Filipski J, Zerial M, Salinas J, Cuny G, Meunier-Rotival M, Rodier F (1985) The mosaic genome of the vertebrates. Science 228:953–958

    CAS  PubMed  Google Scholar 

  • Boeke JD, Corces VG (1989) Transcription and reverse transcription of retrotransposons. Annu Rev Microbiol 43:403–434

    Article  CAS  PubMed  Google Scholar 

  • Boyer PL, Ferris AL, Hughes SH (1992) Cassette mutagenesis of the reverse transcriptase of human immunodeficiency virus type 1. J Virol 66:1031–1039

    CAS  PubMed  Google Scholar 

  • Brendel V, Bucher P, Nourbakhsh IR, Blaisdel BE, Karlin S (1992) Methods and algorithms for statistical analysis of protein sequences. Proc Natl Acad Sci USA 89:2002–2006

    CAS  PubMed  Google Scholar 

  • Burns DPW, Desrosiers RC (1991) Selection of genetic variants of simian immunodeficiency virus in persistently infected rhesus monkeys. J Virol 65:1843–1854

    CAS  PubMed  Google Scholar 

  • Cann AJ, Chen ISY (1990) Human T-cell leukemia virus types I and II. In: Fields BN, Knipe DM (eds) Virology, 2nd ed. Raven, New York, pp 1501–1527

    Google Scholar 

  • Coffin JM, Tsichlis PN, Barker CS, Voynow S, Robinson HL (1980) Variation in avian retrovirus genomes. Ann NY Acad Sci 354:410–425

    CAS  PubMed  Google Scholar 

  • Coffin JM (1990) Retroviridae and their replication. In: Fields BN, Knipe DM (eds) Virology, 2nd ed. Raven, New York, pp 1437–1500

    Google Scholar 

  • Coffin JM (1992) Genetic diversity and evolution of retroviruses. Curr Top Microbiol Immunol 176:143–163

    CAS  PubMed  Google Scholar 

  • Cohen EA, Terwilliger EF, Sodroski JG, Haseltine WA (1988) Identification of a protein encoded by the vpu gene of HIV-1. Nature 334:532–534

    CAS  PubMed  Google Scholar 

  • Dalgeish AG, Beverley PCL, Clapham PR, Crawford DH, Greaves MF, Weiss RA (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus (HTLV-3). Nature 312:763–767

    Google Scholar 

  • Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in proteins. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 3, National Biomedical Research Foundation, Washington, DC

    Google Scholar 

  • DeClercq N, Hemschoote K, Devos A, Peeters B, Heyns W, Rombauts W (1992) The 4.4-kilodalton proline-rich polypeptides of the rat ventral prostate are the proteolytic products of a 637-kilodalton protein displaying highly repetitive sequences and encoded in a single exon. J Biol Chem 267:9884–9894

    CAS  Google Scholar 

  • DiGiulio M (1989) The extension reached by the minimization of the polarity distances during the evolution of the genetic code. J Mol Evol 29:288–293

    CAS  Google Scholar 

  • Donahue PR, Hoover EA, Beltz GA, Riedel N, Hirsch VM, Overbaugh J, Mullins JI (1988) Strong sequence conservation among horizontally transmissible minimally pathogenic feline leukemia viruses. J Virol 62:722–731

    CAS  PubMed  Google Scholar 

  • D'Onofrio G, Mouchiroud D, Aissani B, Gautier C, Bernardi G (1991) Correlations between the compositional properties of human genes, codon usage and amino acid composition of proteins. J Mol Evol 32:504–510

    Article  PubMed  Google Scholar 

  • Doolittle RF, Feng DF, Johnson MS, McClure MA (1989) Origins and evolutionary relationships of retroviruses. Q Rev Biol 64:1–30

    Article  CAS  PubMed  Google Scholar 

  • Doolittle RF, Feng DF (1992) Tracing the origin of retroviruses. Curr Top Microbiol Immunol 176:195–211

    CAS  PubMed  Google Scholar 

  • Fauci AS (1988) The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science 239:617–622

    CAS  PubMed  Google Scholar 

  • Genetics Computer Group (1992) Program manual for the GCG package, version 7, 575 Science Drive, Madison, Wisconsin, USA 53711

  • Grantham R, Perrin P, Mouchiroud D (1986) Patterns in codon usage of different kinds of species. In: Dawkins R, Ridley M (eds) Oxford surveys in evolutionary biology, vol 3. Oxford University Press, pp 48–81

  • Graur D (1985a) Pattern of nucleotide substitution and the extent of purifying selection in retroviruses. J Mol Evol 21:221–231

    Article  CAS  Google Scholar 

  • Graur D (1985b) Amino acid composition and the evolutionary rates of protein-coding genes. J Mol Evol 22:53–62

    Article  CAS  PubMed  Google Scholar 

  • Graur D, Li W-H (1988) Evolution of protein inhibitors of serine proteinases: positive darwinian selection or compositional effects? J Mol Evol 28:131–135

    Article  CAS  PubMed  Google Scholar 

  • Haase AT, Stowring L, Harris JD (1982) Visna DNA synthesis and the tempo of infection in vitro. Virology 119:399–410

    Article  CAS  PubMed  Google Scholar 

  • Haig D, Hurst L (1991) A quantitative measure of error minimization in the genetic code. J Mol Evol 33:412–417

    Article  CAS  PubMed  Google Scholar 

  • Holland J, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S (1982) Rapid evolution of RNA genomes. Science 215:1577–1585

    CAS  PubMed  Google Scholar 

  • Holmes EC, Zhang LQ, Simmonds P, Ludlam CA, Brown AIL (1992) Convergent and divergent sequence evolution in the surface envelope glycoprotein of human immunodeficiency virus type 1 within a single infected patient. Proc Natl Acad Sci USA 89:4835–4839

    CAS  PubMed  Google Scholar 

  • Huynen MA, Konings DAM, Hogeweg P (1992) Equal G and C contents in histone genes indicate selection pressures on mRNA secondary structure. J Mol Evol 34:280–291

    Article  CAS  PubMed  Google Scholar 

  • Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34

    CAS  PubMed  Google Scholar 

  • Ina Y, Gojobori T (1990) Molecular evolution of human T-cell leukemia virus. J Mol Evol 31:493–499

    Article  CAS  PubMed  Google Scholar 

  • Japour AJ, Chatis PA, Eigenrauch HA, Crumpacker CS (1991) Detection of human immunodeficiency virus type 1 clinical isolates with reduced sensitivity to zidovudine and dideoxyinosine by RNA-RNA hybridization. Proc Natl Acad Sci USA 88:3092–3096

    CAS  PubMed  Google Scholar 

  • Jukes TH, Holmquist R, Moise H (1975) Amino acid composition of proteins: selection against the genetic code. Science 189:50–51

    CAS  PubMed  Google Scholar 

  • Jukes TH, Bhushan V (1986) Silent nucleotide substitutions and G + C content of some mitochondrial and bacterial genes. J Mol Evol 24:39–44

    Article  CAS  PubMed  Google Scholar 

  • Kypr J, Mrázek J (1987a) Unusual codon usage of HIV. Nature 327:20

    Article  CAS  PubMed  Google Scholar 

  • Kypr J, Mrázek J (1987b) Occurrence of nucleotide triplets in genes and secondary structure of the coded proteins. Int J Biol Macromol 9:49–53

    Article  CAS  Google Scholar 

  • Kypr J, Mrázek J, Reich J (1989) Nucleotide composition bias and CpG dinucleotide content in the genomes of HIV and HTLV 1/2. Biochim Biophys Acta 1009:280–282

    CAS  PubMed  Google Scholar 

  • Kyte J, Doolittle RE (1982) A simple method for displaying the hydropathic character of protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  • Lazcano A, Valverde V, Hernandez G, Gariglio P, Fox GE, Oro J (1992) On the early emergence of reverse transcription: theoretical basis and experimental evidence. J Mol Evol 35:524–536

    Article  CAS  PubMed  Google Scholar 

  • Lee KY, Wahl R, Barbu E (1956) Content en bases puriques et pyrimidiques des acids desoxyribonucleiques des bacteries. Ann Inst Pasteur 91:212–224

    CAS  Google Scholar 

  • Leeds JM, Slabourgh MB, Mathews CK (1985) DNA precursor pools and ribonucleotide reductase activity: distribution between the nucleus and cytoplasm of mammalian cells. Mol Cell Biol 5:3443–3450

    CAS  PubMed  Google Scholar 

  • Lockhart PJ, Howe CJ, Bryant DA, Beanland TJ, Larkum AWD (1992) Substitutional bias confounds inference of cyanelle origins from sequence data. J Mol Evol 34:153–162

    Article  CAS  PubMed  Google Scholar 

  • Mergia A, Luciw PA (1991) Replication and regulation of primate foamy viruses. Virology 184:475–482

    Article  CAS  PubMed  Google Scholar 

  • Muto A, Osawa S (1987) The guanine and cytosine contents of genomic DNA and bacterial evolution. Proc Natl Acad Sci USA 84:166–169

    CAS  PubMed  Google Scholar 

  • Nara PL, Smit L, Dunlop N, Hatch W, Merges M, Waters D, Kelliher J, Gallo RC, Fischinger PJ, Goudsmit J (1990) Emergence of viruses resistant to neutralization of V3-specific antibodies in experimental human immunodeficiency virus type 1 IIIB infection of chimpanzees. J Virol 64:3779–3791

    CAS  PubMed  Google Scholar 

  • Narayan O, Clements JE (1990) Lentiviruses. In: Fields BN, Knipe DM (eds) Virology, 2nd ed. Raven, New York, pp 1571–1589

    Google Scholar 

  • Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    Article  CAS  PubMed  Google Scholar 

  • Nelson JA, Ghazal P, Wiley CA (1990) Role of opportunistic viral infections in AIDS. AIDS 4:1–10

    CAS  PubMed  Google Scholar 

  • Ohno S (1988) Codon preference is but an illusion created by the construction principle of coding sequences. Proc Natl Acad Sci USA 85:4378–4382

    CAS  PubMed  Google Scholar 

  • Ohno S, Yomo T (1990) Various regulatory sequences are deprived of their uniqueness by the universal rule of TA/CG deficiency and TG/CT excess. Proc Natl Acad Sci USA 87:1218–1222

    CAS  PubMed  Google Scholar 

  • Pang S, Shlesinger Y, Daar ES, Moudgil T, Ho DD, Chen ISY (1992) Rapid generation of sequence variation during primary HIV-1 infection. AIDS 6:453–460

    CAS  PubMed  Google Scholar 

  • Penny D, Hendy M, Zimmer EA, Hanby RK (1990) Trees from sequences: panacea or Pandora's box? Aust Syst Bot 3:21–38

    Article  Google Scholar 

  • Popovic M, Read-Connole E, Gallo RC (1984) T4 positive human neoplastic cell lines susceptible to and permissive for HTLV-III. Lancet 11:1472–1473

    Google Scholar 

  • Preston BD, Poiesz BJ, Loeb LA (1988) Fidelity of HIV-1 reverse transcriptase. Science 242:1168–1171

    CAS  PubMed  Google Scholar 

  • Ratner L, Philpott T, Thowbridge DB (1991) Nucleotide sequence analysis of isolates of human T-lymphotropic virus type 1 of diverse geographical origins. AIDS Res Hum Retroviruses 7:923–941

    CAS  PubMed  Google Scholar 

  • Repaske R, Steele PE, O'Neill RR, Rabson AB, Martin MA (1985) Nucleotide sequence of a full-length human endogenous retroviral segment. J Virol 54:764–772

    CAS  PubMed  Google Scholar 

  • Richman DD (1992) Selection of zidovudine-resistant variants of human immunodeficiency virus by therapy. Curr Top Microbiol Immunol 176:131–143

    CAS  PubMed  Google Scholar 

  • Roberts JD, Bebenek K, Kunkel TA (1988) The accuracy of reverse transcriptase from HIV-1. Science 242:1171–1173

    CAS  PubMed  Google Scholar 

  • Rolfe R, Meselson M (1959) The relative homogeneity of microbial DNA. Proc Natl Acad Sci USA 45:1039–1043

    CAS  Google Scholar 

  • Saccone C, Pesole G, Preparata G (1989) DNA microenvironments and the molecular clock. J Mol Evol 29:407–411

    CAS  PubMed  Google Scholar 

  • Sagata N, Yasunaga T, Tsuzuku-Kawamura J, Ohishi K, Ogawa Y, Ikawa Y (1985) Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retroviruses. Proc Natl Acad Sci USA 82:677–681

    CAS  PubMed  Google Scholar 

  • Schachtel GA, Bucher P, Morcarski ES, Blaisdell BE, Karlin S (1991) Evidence for selective evolution in codon usage in conserved amino acid segments of human alphaherpesvirus proteins. J Mol Evol 33:483–494

    Article  CAS  PubMed  Google Scholar 

  • Shpaer EG, Mullins JI (1990) Selection against CpG dinucleotides in lentiviral genes: a possible role of methylation in regulation of viral expression. Nucleic Acids Res 18:5793–5803

    CAS  PubMed  Google Scholar 

  • Sidow A, Wilson AC (1990) Compositional statistics: an improvement of evolutionary parsimony and its application to deep branches in the tree of life. J Mol Evol 31:51–68

    Article  CAS  PubMed  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, San Francisco, pp 230–234

    Google Scholar 

  • Stevenson M, Bukrinsky M, Haggerty S (1992) HIV-1 replication and potential targets for intervention. AIDS Res Hum Retroviruses 8:107–117

    CAS  PubMed  Google Scholar 

  • Strauss EG, Strauss JH, Levine AJ (1990) Virus evolution. In: Fields BN, Knipe DM (eds) Virology, 2nd ed. Raven, New York, pp 167–190

    Google Scholar 

  • Sueoka N (1959) A statistical analysis of deoxyribonucleic acid distribution in density gradient centrifugation. Proc Natl Acad Sci USA 45:1480–1490

    CAS  Google Scholar 

  • Sueoka N (1961) Compositional correlation between deoxyribonucleic acid and protein. Cold Spring Harbor Symp Quart Biol 26:35–43

    CAS  Google Scholar 

  • Sueoka N (1962) On the genetic basis of variation and heterogeneity of DNA base composition. Proc Natl Acad Sci USA 48:582–592

    CAS  PubMed  Google Scholar 

  • Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA 85:2653–2657

    CAS  PubMed  Google Scholar 

  • Sueoka N (1992) Directional mutation pressure, selective constraints and genetic equilibria. J Mol Evol 34:95–114

    Article  CAS  PubMed  Google Scholar 

  • Teich N (1984) Taxonomy of retroviruses. In: Weiss R, Teich H, Varmus H, Coffin J (eds) RNA tumor viruses, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 25–207

    Google Scholar 

  • Van Wye JD, Bronson EC, Anderson JN (1991) Species-specific patterns of DNA bending and sequence. Nucleic Acids Res 19:5253–5261

    Google Scholar 

  • Varmus H, Brown P (1989) Retroviruses. In: Howe M, Berg D (eds) Mobile DNA elements. American Society of Microbiology, Washington, DC, pp 53–108

    Google Scholar 

  • Vartanian J-P, Meyerhans A, Asjo B, Wain-Hobson S (1991) Selection, recombination, and G → A hypermutation of human immunodeficiency virus type 1 genomes. J Virol 65:1779–1788

    CAS  PubMed  Google Scholar 

  • Velasco AM, Medrano L, Lazcano A, Orb J (1992) A redefinition of the Asp-Asp domain of reverse transcriptases. J Mol Evol 35:551–556

    Article  CAS  PubMed  Google Scholar 

  • Williams KJ, Loeb LA (1992) Retroviral reverse transcriptases: error frequencies and mutagenesis. Curr Top Microbiol Immunol 176:165–181

    CAS  PubMed  Google Scholar 

  • Woese CR, Dugre DH, Dugre SA, Kondo M, Saxinger WC (1966) On the fundamental nature and evolution of the genetic code. Cold Spring Harbor Symp Quant Biol 31:723–736

    CAS  PubMed  Google Scholar 

  • Wong-Staal F (1990) Human immunodeficiency viruses and their replication. In: Fields BN, Knipe DM (eds) Virology, 2nd ed. Raven, New York, pp 1529–1543

    Google Scholar 

  • Yokoyama S, Moriyama EN, Gojabori T (1987) Molecular phylogeny of the human immunodeficiency and related retroviruses. Proc Jpn Acad 63:147–150

    CAS  Google Scholar 

  • Yokoyama S, Chung L, Gojobori T (1988) Molecular evolution of the human immunodeficiency and related viruses. Mol Biol Evol 5:237–251

    CAS  PubMed  Google Scholar 

  • Yomo T, Ohno S (1989) Concordant evolution of coding and noncoding regions of DNA made possible by the universal rule of TA/CG deficiency-TG/CT excess. Proc Natl Acad Sci USA 86:8452–8456

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: J.N. Anderson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronson, E.C., Anderson, J.N. Nucleotide composition as a driving force in the evolution of retroviruses. J Mol Evol 38, 506–532 (1994). https://doi.org/10.1007/BF00178851

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00178851

Key words

Navigation